A Study on Energy-Process-Latency Tradeoff in Embedded Artificial Intelligence

Jinhwi Kim, Apostolos Galanopoulos, J. Joseph, Jeongho Kwak
{"title":"A Study on Energy-Process-Latency Tradeoff in Embedded Artificial Intelligence","authors":"Jinhwi Kim, Apostolos Galanopoulos, J. Joseph, Jeongho Kwak","doi":"10.1109/ICTC49870.2020.9289270","DOIUrl":null,"url":null,"abstract":"In this paper, we explore an impact of GPU/CPU scaling of a state-of-the-art AI embedded device on its energy consumption and AI performance. We use Nvidia Jetson TX2 as an experiment device thanks to its tractability to scale GPU/CPU and modify AI framework and libraries. Via extensive experiment in various ML (Machine Learning) scenarios, i.e., face recognition and objective detection, we demonstrate a clear tradeoff between GPU/CPU scaling, energy consumption (of GPU/CPU as well as entire device) and training/inference speed. Finally, we envision a future work aiming to optimize processing and networking resources simultaneously at an extended scenario that multiple AI embedded devices cooperate with each other for a common AI application.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we explore an impact of GPU/CPU scaling of a state-of-the-art AI embedded device on its energy consumption and AI performance. We use Nvidia Jetson TX2 as an experiment device thanks to its tractability to scale GPU/CPU and modify AI framework and libraries. Via extensive experiment in various ML (Machine Learning) scenarios, i.e., face recognition and objective detection, we demonstrate a clear tradeoff between GPU/CPU scaling, energy consumption (of GPU/CPU as well as entire device) and training/inference speed. Finally, we envision a future work aiming to optimize processing and networking resources simultaneously at an extended scenario that multiple AI embedded devices cooperate with each other for a common AI application.
嵌入式人工智能中能量-过程-延迟权衡的研究
在本文中,我们探讨了最先进的AI嵌入式设备的GPU/CPU缩放对其能耗和AI性能的影响。我们使用Nvidia Jetson TX2作为实验设备,因为它易于扩展GPU/CPU并修改AI框架和库。通过在各种ML(机器学习)场景中的广泛实验,即人脸识别和客观检测,我们展示了GPU/CPU缩放,能耗(GPU/CPU以及整个设备)和训练/推理速度之间的明确权衡。最后,我们设想了一个未来的工作,旨在同时优化处理和网络资源,在一个扩展的场景中,多个人工智能嵌入式设备相互合作,以实现一个共同的人工智能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信