A Rough-Fuzzy Controller for Autonomous Mobile Robot Navigation

Chang Su Lee, T. Braunl, A. Zaknich
{"title":"A Rough-Fuzzy Controller for Autonomous Mobile Robot Navigation","authors":"Chang Su Lee, T. Braunl, A. Zaknich","doi":"10.1109/IS.2006.348501","DOIUrl":null,"url":null,"abstract":"This paper presents a new development of a rough-fuzzy controller for an autonomous mobile robot based on rough set and fuzzy set theory. It has been tested in different environments with the Saphira simulation software. The proposed approach provides an improvement in uncertainty reasoning by using a rough-fuzzy controller, resulting in better wall-following behavior performance as compared against other controllers. The rough-fuzziness of the input data leads to the enhanced uncertainty reasoning process by calculating the roughly approximated fuzzified value of the input, which makes the system more robust and reliable","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a new development of a rough-fuzzy controller for an autonomous mobile robot based on rough set and fuzzy set theory. It has been tested in different environments with the Saphira simulation software. The proposed approach provides an improvement in uncertainty reasoning by using a rough-fuzzy controller, resulting in better wall-following behavior performance as compared against other controllers. The rough-fuzziness of the input data leads to the enhanced uncertainty reasoning process by calculating the roughly approximated fuzzified value of the input, which makes the system more robust and reliable
自主移动机器人导航的粗糙模糊控制器
本文提出了一种基于粗糙集和模糊集理论的自主移动机器人粗模糊控制器的新进展。它已经在不同的环境中使用Saphira仿真软件进行了测试。该方法通过使用粗糙模糊控制器改进了不确定性推理,与其他控制器相比,具有更好的wall-follow行为性能。输入数据的粗模糊性通过计算输入数据的粗逼近模糊化值来增强不确定性推理过程,使系统具有更强的鲁棒性和可靠性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信