Study on C. elegans behaviors using recurrent neural network model

Jian-xin Xu, Xin Deng, Dongxu Ji
{"title":"Study on C. elegans behaviors using recurrent neural network model","authors":"Jian-xin Xu, Xin Deng, Dongxu Ji","doi":"10.1109/ICCIS.2010.5518591","DOIUrl":null,"url":null,"abstract":"With the complete knowledge on the anatomical nerve connections of the nematode Caenorhabditis elegans (C. elegans), the chemotaxis behaviors including food attraction and toxin avoidance, are modeled using dynamic neural networks (DNN). This paper first uses artificial DNN, with 7 neurons, to model chemotaxis behaviors with single sensor neurons. Real time recurrent learning (RTRL) is carried out to train the DNN weights. Next, this paper split the single sensor neuron into the left and right pair (dual-sensor neuron), with the assumption that C. elegans can distinguish the input difference between left and right, and then the model is applied to learn to reproduce the chemotaxis behaviors. The simulation results conclude that DNN can well model the behaviors of C. elegans from sensory inputs to motor outputs both in single sensor and dual-sensor neuron networks.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the complete knowledge on the anatomical nerve connections of the nematode Caenorhabditis elegans (C. elegans), the chemotaxis behaviors including food attraction and toxin avoidance, are modeled using dynamic neural networks (DNN). This paper first uses artificial DNN, with 7 neurons, to model chemotaxis behaviors with single sensor neurons. Real time recurrent learning (RTRL) is carried out to train the DNN weights. Next, this paper split the single sensor neuron into the left and right pair (dual-sensor neuron), with the assumption that C. elegans can distinguish the input difference between left and right, and then the model is applied to learn to reproduce the chemotaxis behaviors. The simulation results conclude that DNN can well model the behaviors of C. elegans from sensory inputs to motor outputs both in single sensor and dual-sensor neuron networks.
用递归神经网络模型研究秀丽隐杆线虫的行为
在全面了解秀丽隐杆线虫(C. elegans)解剖神经连接的基础上,利用动态神经网络(DNN)对其趋化行为(包括食物吸引和毒素回避)进行建模。本文首先使用7个神经元的人工DNN,对单个传感器神经元的趋化行为进行建模。采用实时循环学习(RTRL)训练深度神经网络的权值。接下来,本文假设秀丽隐杆线虫能够区分左右输入的差异,将单个传感器神经元拆分为左右对(双传感器神经元),然后应用该模型学习再现趋化行为。仿真结果表明,无论是在单传感器还是双传感器神经元网络中,深度神经网络都能很好地模拟秀丽隐杆线虫从感觉输入到运动输出的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信