An Optimized Clustering Approach using Tree Seed Algorithm for the Brain MRI Images Segmentation

Ghazi Boumediene ghaouti, Boudjelal Meftah
{"title":"An Optimized Clustering Approach using Tree Seed Algorithm for the Brain MRI Images Segmentation","authors":"Ghazi Boumediene ghaouti, Boudjelal Meftah","doi":"10.4114/intartif.vol26iss72pp44-59","DOIUrl":null,"url":null,"abstract":"Clustering algorithms are widely used to segment medical images. However, these techniques are difficult to perform, especially in brain magnetic resonance images (MRI), given the complexity of the anatomical structure of brain tissue, the in-homogeneity of pixel intensity in these images, and partial volume and noise effects. This will cause the algorithm to fall into the local minima problem; for this reason, it is recommended to improve such clustering algorithms using optimization techniques to obtain better results. In this study, we have proposed a developed clustering algorithm and we optimized it using a tree seed algorithm (TSA) to segment brain MRI image. Algorithms are tested on real brain image datasets. The experimental results on simulated and real brain MRI datasets show that our proposed method has satisfactory results regarding the Davies-Bouldin index (DBI) compared to the fuzzy c-mean (FCM) algorithm.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss72pp44-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering algorithms are widely used to segment medical images. However, these techniques are difficult to perform, especially in brain magnetic resonance images (MRI), given the complexity of the anatomical structure of brain tissue, the in-homogeneity of pixel intensity in these images, and partial volume and noise effects. This will cause the algorithm to fall into the local minima problem; for this reason, it is recommended to improve such clustering algorithms using optimization techniques to obtain better results. In this study, we have proposed a developed clustering algorithm and we optimized it using a tree seed algorithm (TSA) to segment brain MRI image. Algorithms are tested on real brain image datasets. The experimental results on simulated and real brain MRI datasets show that our proposed method has satisfactory results regarding the Davies-Bouldin index (DBI) compared to the fuzzy c-mean (FCM) algorithm.
基于树种子算法的脑MRI图像分割优化聚类方法
聚类算法被广泛用于医学图像分割。然而,由于脑组织解剖结构的复杂性、图像中像素强度的不均匀性以及部分体积和噪声效应,这些技术很难实现,特别是在脑磁共振图像(MRI)中。这将使算法陷入局部极小问题;因此,建议使用优化技术改进此类聚类算法,以获得更好的结果。在本研究中,我们提出了一种改进的聚类算法,并使用树种子算法(TSA)对其进行优化,以分割脑MRI图像。算法在真实的脑图像数据集上进行了测试。在模拟和真实脑MRI数据集上的实验结果表明,与模糊c均值(FCM)算法相比,本文提出的方法在davis - bouldin指数(DBI)方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信