NETR-Tree: An Efficient Framework for Social-Based Time-Aware Spatial Keyword Query

Zhixian Yang, Yuanning Gao, Xiaofeng Gao, Guihai Chen
{"title":"NETR-Tree: An Efficient Framework for Social-Based Time-Aware Spatial Keyword Query","authors":"Zhixian Yang, Yuanning Gao, Xiaofeng Gao, Guihai Chen","doi":"10.1109/ICWS53863.2021.00038","DOIUrl":null,"url":null,"abstract":"The development of global positioning system stimulates the popularity of location-based social network (LBSN) services. With a large volume of data containing locations, texts, check-in information, and social relationships, spatial keyword queries in LBSNs have become increasingly complex. In this paper, we identify and solve the Social-based Time-aware Spatial Keyword Query (STSKQ) that returns the top-k objects by considering geo-spatial score, keywords similarity, visiting time score, and social relationship effect. To tackle STSKQ, we propose a two-layer hybrid index structure called Network Embedding Time-aware R-tree (NETR-Tree). In the user layer, we exploit the network embedding strategy to measure the relationship effect in users' relationship network. In the location layer, we build a Time-aware R-tree (TR-tree) considered spatial objects' spatiotemporal check-in information, and present a corresponding query processing algorithm. Finally, extensive experiments on two different real-life LBSNs demonstrate the effectiveness and efficiency of our methods, compared with existing state-of-the-art methods.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of global positioning system stimulates the popularity of location-based social network (LBSN) services. With a large volume of data containing locations, texts, check-in information, and social relationships, spatial keyword queries in LBSNs have become increasingly complex. In this paper, we identify and solve the Social-based Time-aware Spatial Keyword Query (STSKQ) that returns the top-k objects by considering geo-spatial score, keywords similarity, visiting time score, and social relationship effect. To tackle STSKQ, we propose a two-layer hybrid index structure called Network Embedding Time-aware R-tree (NETR-Tree). In the user layer, we exploit the network embedding strategy to measure the relationship effect in users' relationship network. In the location layer, we build a Time-aware R-tree (TR-tree) considered spatial objects' spatiotemporal check-in information, and present a corresponding query processing algorithm. Finally, extensive experiments on two different real-life LBSNs demonstrate the effectiveness and efficiency of our methods, compared with existing state-of-the-art methods.
NETR-Tree:基于社会的时间感知空间关键字查询的有效框架
全球定位系统的发展促进了基于位置的社交网络服务的普及。由于包含位置、文本、签到信息和社会关系的大量数据,LBSNs中的空间关键字查询变得越来越复杂。本文通过考虑地理空间分数、关键词相似度、访问时间分数和社会关系效应等因素,识别并求解了返回top-k对象的基于社会的时间感知空间关键词查询(social - time -aware Spatial Keyword Query, STSKQ)。为了解决STSKQ问题,我们提出了一种双层混合索引结构,称为网络嵌入时间感知r树(Network Embedding Time-aware R-tree, NETR-Tree)。在用户层,我们利用网络嵌入策略来衡量用户关系网络中的关系效应。在位置层,考虑空间对象的时空签入信息,构建了一棵时间感知r树,并给出了相应的查询处理算法。最后,在两个不同的现实生活LBSNs上进行了大量实验,与现有的最先进的方法相比,证明了我们的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信