Optimisation of data collection strategies for model-based evaluation and decision-making: poster

R. Cain, A. Moorsel
{"title":"Optimisation of data collection strategies for model-based evaluation and decision-making: poster","authors":"R. Cain, A. Moorsel","doi":"10.1145/2746194.2746224","DOIUrl":null,"url":null,"abstract":"Probabilistic and stochastic models are routinely used in performance, dependability and, more recently, security evaluation. Determining appropriate values for model parameters is a long-standing problem in the practical use of such models. With the increasing emphasis on human aspects and business considerations, data collection to estimate parameter values often gets prohibitively expensive, since it may involve questionnaires, costly audits or additional monitoring and processing. This work aims to facilitate the design of optimal data collection strategies for such models, looking especially at application in security decision-making. We discuss related literature and illustrate the main idea behind out approach for optimising data collection for model-based system evaluation.","PeriodicalId":134331,"journal":{"name":"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746194.2746224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Probabilistic and stochastic models are routinely used in performance, dependability and, more recently, security evaluation. Determining appropriate values for model parameters is a long-standing problem in the practical use of such models. With the increasing emphasis on human aspects and business considerations, data collection to estimate parameter values often gets prohibitively expensive, since it may involve questionnaires, costly audits or additional monitoring and processing. This work aims to facilitate the design of optimal data collection strategies for such models, looking especially at application in security decision-making. We discuss related literature and illustrate the main idea behind out approach for optimising data collection for model-based system evaluation.
基于模型的评估和决策的数据收集策略的优化:海报
概率和随机模型通常用于性能、可靠性以及最近的安全性评估。在实际应用中,如何确定模型参数的合适值是一个长期存在的问题。随着对人的方面和业务考虑因素的日益重视,用于估计参数值的数据收集通常变得非常昂贵,因为它可能涉及问卷调查、昂贵的审计或额外的监视和处理。本工作旨在促进这些模型的最佳数据收集策略的设计,特别是在安全决策中的应用。我们讨论了相关文献,并说明了我们优化基于模型的系统评估的数据收集方法背后的主要思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信