SensorSift: balancing sensor data privacy and utility in automated face understanding

Miro Enev, Jaeyeon Jung, Liefeng Bo, Xiaofeng Ren, Tadayoshi Kohno
{"title":"SensorSift: balancing sensor data privacy and utility in automated face understanding","authors":"Miro Enev, Jaeyeon Jung, Liefeng Bo, Xiaofeng Ren, Tadayoshi Kohno","doi":"10.1145/2420950.2420975","DOIUrl":null,"url":null,"abstract":"We introduce SensorSift, a new theoretical scheme for balancing utility and privacy in smart sensor applications. At the heart of our contribution is an algorithm which transforms raw sensor data into a 'sifted' representation which minimizes exposure of user defined private attributes while maximally exposing application-requested public attributes. We envision multiple applications using the same platform, and requesting access to public attributes explicitly not known at the time of the platform creation. Support for future-defined public attributes, while still preserving the defined privacy of the private attributes, is a central challenge that we tackle.\n To evaluate our approach, we apply SensorSift to the PubFig dataset of celebrity face images, and study how well we can simultaneously hide and reveal various policy combinations of face attributes using machine classifiers.\n We find that as long as the public and private attributes are not significantly correlated, it is possible to generate a sifting transformation which reduces private attribute inferences to random guessing while maximally retaining classifier accuracy of public attributes relative to raw data (average PubLoss = .053 and PrivLoss = .075, see Figure 4). In addition, our sifting transformations led to consistent classification performance when evaluated using a set of five modern machine learning methods (linear SVM, kNearest Neighbors, Random Forests, kernel SVM, and Neural Nets).","PeriodicalId":397003,"journal":{"name":"Asia-Pacific Computer Systems Architecture Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Computer Systems Architecture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2420950.2420975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce SensorSift, a new theoretical scheme for balancing utility and privacy in smart sensor applications. At the heart of our contribution is an algorithm which transforms raw sensor data into a 'sifted' representation which minimizes exposure of user defined private attributes while maximally exposing application-requested public attributes. We envision multiple applications using the same platform, and requesting access to public attributes explicitly not known at the time of the platform creation. Support for future-defined public attributes, while still preserving the defined privacy of the private attributes, is a central challenge that we tackle. To evaluate our approach, we apply SensorSift to the PubFig dataset of celebrity face images, and study how well we can simultaneously hide and reveal various policy combinations of face attributes using machine classifiers. We find that as long as the public and private attributes are not significantly correlated, it is possible to generate a sifting transformation which reduces private attribute inferences to random guessing while maximally retaining classifier accuracy of public attributes relative to raw data (average PubLoss = .053 and PrivLoss = .075, see Figure 4). In addition, our sifting transformations led to consistent classification performance when evaluated using a set of five modern machine learning methods (linear SVM, kNearest Neighbors, Random Forests, kernel SVM, and Neural Nets).
SensorSift:平衡传感器数据隐私和自动面部理解的效用
我们介绍了SensorSift,一种在智能传感器应用中平衡效用和隐私的新理论方案。我们贡献的核心是一种算法,它将原始传感器数据转换为“筛选”的表示,从而最大限度地减少用户定义的私有属性的暴露,同时最大限度地暴露应用程序请求的公共属性。我们设想多个应用程序使用同一个平台,并请求访问在创建平台时不知道的公共属性。支持未来定义的公共属性,同时仍然保留私有属性的已定义隐私,是我们要解决的核心挑战。为了评估我们的方法,我们将SensorSift应用于名人面部图像的PubFig数据集,并研究我们如何使用机器分类器同时隐藏和显示面部属性的各种策略组合。我们发现,只要公共属性和私有属性不显著相关,就可以生成筛选转换,将私有属性推断减少为随机猜测,同时最大限度地保持公共属性相对于原始数据的分类器精度(平均PubLoss = 0.053, PrivLoss = 0.075,见图4)。此外,当使用一组五种现代机器学习方法(线性支持向量机、最近邻、随机森林、核支持向量机和神经网络)进行评估时,我们的筛选转换导致了一致的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信