{"title":"Non-iterative SLAM","authors":"Chen Wang, Junsong Yuan, Lihua Xie","doi":"10.1109/ICAR.2017.8023500","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to create a new framework for dense SLAM that is light enough for micro-robot systems based on depth camera and inertial sensor. Feature-based and direct methods are two mainstreams in visual SLAM. Both methods minimize photometric or reprojection error by iterative solutions, which are computationally expensive. To overcome this problem, we propose a non-iterative framework to reduce computational requirement. First, the attitude and heading reference system (AHRS) and axonometric projection are utilized to decouple the 6 Degree-of-Freedom (DoF) data, so that point clouds can be matched in independent spaces respectively. Second, based on single key-frame training, the matching process is carried out in frequency domain by Fourier transformation, which provides a closed-form non-iterative solution. In this manner, the time complexity is reduced to O(n log n), where n is the number of matched points in each frame. To the best of our knowledge, this method is the first non-iterative and online trainable approach for data association in visual SLAM. Compared with the state-of-the-arts, it runs at a faster speed and obtains 3-D maps with higher resolution yet still with comparable accuracy.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The goal of this paper is to create a new framework for dense SLAM that is light enough for micro-robot systems based on depth camera and inertial sensor. Feature-based and direct methods are two mainstreams in visual SLAM. Both methods minimize photometric or reprojection error by iterative solutions, which are computationally expensive. To overcome this problem, we propose a non-iterative framework to reduce computational requirement. First, the attitude and heading reference system (AHRS) and axonometric projection are utilized to decouple the 6 Degree-of-Freedom (DoF) data, so that point clouds can be matched in independent spaces respectively. Second, based on single key-frame training, the matching process is carried out in frequency domain by Fourier transformation, which provides a closed-form non-iterative solution. In this manner, the time complexity is reduced to O(n log n), where n is the number of matched points in each frame. To the best of our knowledge, this method is the first non-iterative and online trainable approach for data association in visual SLAM. Compared with the state-of-the-arts, it runs at a faster speed and obtains 3-D maps with higher resolution yet still with comparable accuracy.