Fast antirandom (FAR) test generation

A. Andrews, Andre Bai, Tom Chen, Charles Anderson, A. Hajjar
{"title":"Fast antirandom (FAR) test generation","authors":"A. Andrews, Andre Bai, Tom Chen, Charles Anderson, A. Hajjar","doi":"10.1109/HASE.1998.731625","DOIUrl":null,"url":null,"abstract":"Anti-random testing has proved useful in a series of empirical evaluations. The basic premise of anti-random testing is to choose new test vectors that are as far away from existing test inputs as possible. The distance measure is the Hamming or Cartesian distance. Unfortunately, this method essentially requires emuneration of the input space and computation of each input vector when used on an arbitrary set of existing test data. This prevents scale-up to a large test sets and/or long input vectors. We present and empirically evaluate a technique to generate anti-random vectors that is computationally feasible for large input vectors and long sequences of tests. We also show how this fast anti-random test generation (FAR) can consider retained state (i.e. effects of subsequent inputs on each other). We evaluate effectiveness using branch coverage as the testing criterion.","PeriodicalId":340424,"journal":{"name":"Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No.98EX231)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No.98EX231)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.1998.731625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Anti-random testing has proved useful in a series of empirical evaluations. The basic premise of anti-random testing is to choose new test vectors that are as far away from existing test inputs as possible. The distance measure is the Hamming or Cartesian distance. Unfortunately, this method essentially requires emuneration of the input space and computation of each input vector when used on an arbitrary set of existing test data. This prevents scale-up to a large test sets and/or long input vectors. We present and empirically evaluate a technique to generate anti-random vectors that is computationally feasible for large input vectors and long sequences of tests. We also show how this fast anti-random test generation (FAR) can consider retained state (i.e. effects of subsequent inputs on each other). We evaluate effectiveness using branch coverage as the testing criterion.
快速反随机(FAR)测试生成
反随机测试在一系列实证评估中被证明是有用的。反随机测试的基本前提是选择尽可能远离现有测试输入的新测试向量。距离度量是汉明或笛卡尔距离。不幸的是,当在任意一组现有测试数据上使用时,这种方法本质上需要对输入空间进行运算和对每个输入向量进行计算。这可以防止放大到大型测试集和/或长输入向量。我们提出并经验性地评估了一种生成反随机向量的技术,该技术对于大输入向量和长序列的测试在计算上是可行的。我们还展示了这种快速反随机测试生成(FAR)如何考虑保留状态(即后续输入对彼此的影响)。我们使用分支覆盖率作为测试标准来评估有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信