Low bitrate coding schemes for local image descriptors

A. Redondi, M. Cesana, M. Tagliasacchi
{"title":"Low bitrate coding schemes for local image descriptors","authors":"A. Redondi, M. Cesana, M. Tagliasacchi","doi":"10.1109/MMSP.2012.6343427","DOIUrl":null,"url":null,"abstract":"Efficient coding of local image descriptors is of paramount importance when they need to be transmitted to a remote destination on bandwidth constrained networks. This is a case that arises, e.g., in mobile visual search and visual wireless sensor networks. In this work we consider SURF, a popular descriptor suitable for low-complexity devices, and we provide a comparative study of lossy coding schemes operating at low bitrate (e.g., less than 128 bits / descriptor). Our investigation covers schemes that address both intra- and inter-descriptor redundancy, including methods that have not been tested before in this context, e.g., sparse coding, lifting-based coding on trees, and hybrid intra and inter-descriptor coding. The experimental evaluation is carried out on two publicly available datasets, in terms of both rate-distortion and rate-accuracy, for the specific task of object recognition. Our results show that a rate saving of 15-30% can be achieved by exploiting intra-descriptor redundancy. On the other side, addressing inter-descriptor redundancy does not lead to substantial gains when applied alone, whereas it leads to marginal gains (up to 3%) when used in hybrid schemes jointly with intra-descriptor coding.","PeriodicalId":325274,"journal":{"name":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2012.6343427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Efficient coding of local image descriptors is of paramount importance when they need to be transmitted to a remote destination on bandwidth constrained networks. This is a case that arises, e.g., in mobile visual search and visual wireless sensor networks. In this work we consider SURF, a popular descriptor suitable for low-complexity devices, and we provide a comparative study of lossy coding schemes operating at low bitrate (e.g., less than 128 bits / descriptor). Our investigation covers schemes that address both intra- and inter-descriptor redundancy, including methods that have not been tested before in this context, e.g., sparse coding, lifting-based coding on trees, and hybrid intra and inter-descriptor coding. The experimental evaluation is carried out on two publicly available datasets, in terms of both rate-distortion and rate-accuracy, for the specific task of object recognition. Our results show that a rate saving of 15-30% can be achieved by exploiting intra-descriptor redundancy. On the other side, addressing inter-descriptor redundancy does not lead to substantial gains when applied alone, whereas it leads to marginal gains (up to 3%) when used in hybrid schemes jointly with intra-descriptor coding.
局部图像描述符的低比特率编码方案
当局部图像描述符需要在带宽受限的网络上传输到远程目的地时,有效的编码是至关重要的。这是在移动视觉搜索和视觉无线传感器网络中出现的一种情况。在这项工作中,我们考虑SURF,一种适用于低复杂度设备的流行描述符,我们提供了在低比特率(例如,低于128位/描述符)下运行的有损编码方案的比较研究。我们的研究涵盖了解决描述符内部和描述符之间冗余的方案,包括以前没有在这种情况下测试过的方法,例如,稀疏编码,基于树的提升编码,以及描述符内部和描述符之间的混合编码。针对特定的目标识别任务,在两个公开的数据集上进行了速率失真和速率精度的实验评估。我们的结果表明,利用描述符内冗余可以节省15-30%的速率。另一方面,单独应用时,处理描述符间冗余不会带来显著的收益,而在混合方案中与描述符内编码联合使用时,它会带来边际收益(高达3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信