Nonlinear System's Identification using Neuro-Fuzzy model tuned by Crow Search Algorithm

Mourad Turki, M. A. Zeddini, Issa Malloug, A. Sakly
{"title":"Nonlinear System's Identification using Neuro-Fuzzy model tuned by Crow Search Algorithm","authors":"Mourad Turki, M. A. Zeddini, Issa Malloug, A. Sakly","doi":"10.1109/STA50679.2020.9329306","DOIUrl":null,"url":null,"abstract":"We propose in this work a new algorithm of optimization named Crow Search Algorithm CSA to elicit neuro-fuzzy model such TS type. In the proposed study, a particle is formed by two tasks: its structure and its parameters. The CSA algorithm was compared with others: GA and PSO through a modeling of nonlinear system. The results prove that CSA method gives optimal mean of MSE and optimal of standard deviation of MSE compared to GA and PSO.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose in this work a new algorithm of optimization named Crow Search Algorithm CSA to elicit neuro-fuzzy model such TS type. In the proposed study, a particle is formed by two tasks: its structure and its parameters. The CSA algorithm was compared with others: GA and PSO through a modeling of nonlinear system. The results prove that CSA method gives optimal mean of MSE and optimal of standard deviation of MSE compared to GA and PSO.
基于Crow搜索算法的神经模糊模型非线性系统辨识
本文提出了一种新的优化算法——乌鸦搜索算法(Crow Search algorithm CSA),用于求解TS型神经模糊模型。在提出的研究中,粒子由两个任务组成:它的结构和它的参数。通过对非线性系统的建模,将CSA算法与遗传算法和粒子群算法进行了比较。结果表明,与遗传算法和粒子群算法相比,CSA方法能给出最优的均值和标准差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信