Intuitionistic fuzzy radial basis functions network for modeling of nonlinear dynamics

Y. Todorov, P. Koprinkova-Hristova, M. Terziyska
{"title":"Intuitionistic fuzzy radial basis functions network for modeling of nonlinear dynamics","authors":"Y. Todorov, P. Koprinkova-Hristova, M. Terziyska","doi":"10.1109/PC.2017.7976249","DOIUrl":null,"url":null,"abstract":"This paper deals with a design methodology for a neural network with improved robust qualities in notion to handling uncertain input data space variations. The proposed network topology combines the simplicity of the radial basis functions networks to interpret or classify data pairs and the abilities of the intuitionistic fuzzy logic to deal with the vagueness of the data space. A simplified gradient optimization procedure as a learning approach for the designed hybrid neural network is proposed. To investigate the effects of the generated structure throughout varying network parameters, the modeling of a two benchmark chaotic time series — Mackey-Glass and Rossler under uncertain conditions is investigated. The obtained results prove the flexibility of the approach and its potentials to cope with data variations.","PeriodicalId":377619,"journal":{"name":"2017 21st International Conference on Process Control (PC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2017.7976249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with a design methodology for a neural network with improved robust qualities in notion to handling uncertain input data space variations. The proposed network topology combines the simplicity of the radial basis functions networks to interpret or classify data pairs and the abilities of the intuitionistic fuzzy logic to deal with the vagueness of the data space. A simplified gradient optimization procedure as a learning approach for the designed hybrid neural network is proposed. To investigate the effects of the generated structure throughout varying network parameters, the modeling of a two benchmark chaotic time series — Mackey-Glass and Rossler under uncertain conditions is investigated. The obtained results prove the flexibility of the approach and its potentials to cope with data variations.
用于非线性动力学建模的直觉模糊径向基函数网络
本文研究了一种改进概念鲁棒性的神经网络设计方法,用于处理不确定输入数据空间的变化。所提出的网络拓扑结构结合了径向基函数网络解释或分类数据对的简单性和直觉模糊逻辑处理数据空间模糊性的能力。提出了一种简化的梯度优化方法作为混合神经网络的学习方法。为了研究生成的结构在不同网络参数下的影响,研究了两个基准混沌时间序列在不确定条件下的建模。所得结果证明了该方法的灵活性及其在处理数据变化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信