Real-time FPGA decentralized inverse optimal neural control for a Shrimp robot

Gener Quintal, E. Sánchez, A. Alanis, N. Arana-Daniel
{"title":"Real-time FPGA decentralized inverse optimal neural control for a Shrimp robot","authors":"Gener Quintal, E. Sánchez, A. Alanis, N. Arana-Daniel","doi":"10.1109/SYSOSE.2015.7151922","DOIUrl":null,"url":null,"abstract":"This paper presents a field programmable gate array (FPGA) implementation for a decentralized inverse optimal neural controller for unknown nonlinear systems, in presence of external disturbances and parameter uncertainties. This controller is based on two techniques: first, an identifier using a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm; second, on the basis of the neural identifier a controller which uses inverse optimal control, is designed to avoid solving the Hamilton Jacobi Bellman (HJB) equation. The proposed scheme is implemented in real-time to control a Shrimp robot.","PeriodicalId":399744,"journal":{"name":"2015 10th System of Systems Engineering Conference (SoSE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2015.7151922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a field programmable gate array (FPGA) implementation for a decentralized inverse optimal neural controller for unknown nonlinear systems, in presence of external disturbances and parameter uncertainties. This controller is based on two techniques: first, an identifier using a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm; second, on the basis of the neural identifier a controller which uses inverse optimal control, is designed to avoid solving the Hamilton Jacobi Bellman (HJB) equation. The proposed scheme is implemented in real-time to control a Shrimp robot.
虾机器人的实时FPGA分散逆最优神经控制
针对存在外部干扰和参数不确定性的未知非线性系统,提出了一种分散式逆最优神经控制器的现场可编程门阵列(FPGA)实现。该控制器基于两种技术:首先,使用扩展卡尔曼滤波(EKF)算法训练的离散时间循环高阶神经网络(RHONN)的标识符;其次,在神经辨识器的基础上,设计了一种采用逆最优控制的控制器,以避免求解Hamilton Jacobi Bellman (HJB)方程。该方案在虾机器人的实时控制中得到了实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信