P. Buchner, M. Hausladen, A. Schels, F. Herdl, S. Edler, M. Bachmann, R. Schreiner
{"title":"An Integrated Silicon Nanowire Field Emission Electron Source on a Chip with High Electron Transmission","authors":"P. Buchner, M. Hausladen, A. Schels, F. Herdl, S. Edler, M. Bachmann, R. Schreiner","doi":"10.1109/IVNC57695.2023.10188878","DOIUrl":null,"url":null,"abstract":"Silicon nanowire field emission arrays (50 × 50 pillars) were fabricated on a silicon glass hybrid wafer. The glass acts both as the support for the whole structure and insulator between cathode and extraction grid. The extraction grid matches the emitter structures and is optically aligned and adhered to the emitter chip by a vacuum compatible epoxide adhesive. These chips exhibit an emission current of about 600 $\\mu{\\mathrm{A}}$ at an extraction voltage of 300 V. The electron transmission through the grid is above 80 %. 58-hour longtime measurements were conducted showing low degradation of the emission current and high stability of electron transmission.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon nanowire field emission arrays (50 × 50 pillars) were fabricated on a silicon glass hybrid wafer. The glass acts both as the support for the whole structure and insulator between cathode and extraction grid. The extraction grid matches the emitter structures and is optically aligned and adhered to the emitter chip by a vacuum compatible epoxide adhesive. These chips exhibit an emission current of about 600 $\mu{\mathrm{A}}$ at an extraction voltage of 300 V. The electron transmission through the grid is above 80 %. 58-hour longtime measurements were conducted showing low degradation of the emission current and high stability of electron transmission.