Interactive Computation of Timbre Spaces for Sound Synthesis Control

Stefano Fasciani
{"title":"Interactive Computation of Timbre Spaces for Sound Synthesis Control","authors":"Stefano Fasciani","doi":"10.25370/ARRAY.V20152528","DOIUrl":null,"url":null,"abstract":"Expressive sonic interaction with sound synthesizers requires the control of a continuous and high dimensional space. Further, the relationship between synthesis variables and timbre of the generated sound is typically complex or unknown to users. In previous works, we presented an unsupervised mapping method based on machine listening and machine learning techniques, which addresses these challenges by providing a low-dimensional and perceptually related timbre control space. The mapping maximizes the breadth of the explorable sonic space covered by the sound synthesizer, and minimizes possible timbre losses due to the low­-dimensional control. The mapping is generated automatically by a system requiring little input from users. In this paper we present an improved method and an optimized implementation that drastically reduce the time for timbre analysis and mapping computation. Here we introduce the use of the extreme learning machines for the regression from control to timbre spaces, and an interactive approach for the analysis of the synthesizer sonic response, performed as users explore the parameters of the instrument. This work is implemented in a generic and open-source tool that enables the computation of ad hoc synthesis mappings through timbre spaces, facilitating and speeding up the workflow to get a customized sonic control system.","PeriodicalId":223537,"journal":{"name":"array. the journal of the ICMA","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"array. the journal of the ICMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25370/ARRAY.V20152528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Expressive sonic interaction with sound synthesizers requires the control of a continuous and high dimensional space. Further, the relationship between synthesis variables and timbre of the generated sound is typically complex or unknown to users. In previous works, we presented an unsupervised mapping method based on machine listening and machine learning techniques, which addresses these challenges by providing a low-dimensional and perceptually related timbre control space. The mapping maximizes the breadth of the explorable sonic space covered by the sound synthesizer, and minimizes possible timbre losses due to the low­-dimensional control. The mapping is generated automatically by a system requiring little input from users. In this paper we present an improved method and an optimized implementation that drastically reduce the time for timbre analysis and mapping computation. Here we introduce the use of the extreme learning machines for the regression from control to timbre spaces, and an interactive approach for the analysis of the synthesizer sonic response, performed as users explore the parameters of the instrument. This work is implemented in a generic and open-source tool that enables the computation of ad hoc synthesis mappings through timbre spaces, facilitating and speeding up the workflow to get a customized sonic control system.
声音合成控制中音色空间的交互计算
用声音合成器表达声音需要对连续的高维空间进行控制。此外,合成变量和生成声音的音色之间的关系通常是复杂的或未知的用户。在之前的工作中,我们提出了一种基于机器聆听和机器学习技术的无监督映射方法,该方法通过提供低维和感知相关的音色控制空间来解决这些挑战。映射最大限度地扩大了声音合成器覆盖的可探索声音空间的宽度,并最大限度地减少了由于低维控制而造成的可能的音色损失。该映射是由系统自动生成的,几乎不需要用户输入。在本文中,我们提出了一种改进的方法和优化的实现,大大减少了音色分析和映射计算的时间。在这里,我们介绍了从控制到音色空间回归的极端学习机的使用,以及在用户探索仪器参数时进行合成器声音响应分析的交互式方法。这项工作是在一个通用的开源工具中实现的,该工具可以通过音色空间计算特别的合成映射,促进和加快工作流,以获得定制的声音控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信