Regression methods for prediction of PECVD Silicon Nitride layer thickness

H. Purwins, Ahmed Nagi, Bernd Barak, Uwe Hockele, A. Kyek, B. Lenz, Gunter Pfeifer, K. Weinzierl
{"title":"Regression methods for prediction of PECVD Silicon Nitride layer thickness","authors":"H. Purwins, Ahmed Nagi, Bernd Barak, Uwe Hockele, A. Kyek, B. Lenz, Gunter Pfeifer, K. Weinzierl","doi":"10.1109/CASE.2011.6042426","DOIUrl":null,"url":null,"abstract":"Different approaches for the prediction of average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process are compared, based on metrology and production equipment Fault Detection and Classification (FDC) data. Various sets of FDC parameters are processed by different prediction algorithms. In particular, the use of high-dimensional multivariate input data in comparison to small parameter sets is assessed. As prediction methods, Simple Linear Regression, Multiple Linear Regression, Partial Least Square Regression, and Ridge Linear Regression utilizing the Partial Least Square Estimate algorithm are compared. Regression parameter optimization and model selection is performed and evaluated via cross validation and grid search, using the Root Mean Squared Error. Process expert knowledge used for a priori selection of FDC parameters further enhances the performance. Our results indicate that Virtual Metrology can benefit from the usage of regression methods exploiting collinearity combined with comprehensive process expert knowledge.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Different approaches for the prediction of average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process are compared, based on metrology and production equipment Fault Detection and Classification (FDC) data. Various sets of FDC parameters are processed by different prediction algorithms. In particular, the use of high-dimensional multivariate input data in comparison to small parameter sets is assessed. As prediction methods, Simple Linear Regression, Multiple Linear Regression, Partial Least Square Regression, and Ridge Linear Regression utilizing the Partial Least Square Estimate algorithm are compared. Regression parameter optimization and model selection is performed and evaluated via cross validation and grid search, using the Root Mean Squared Error. Process expert knowledge used for a priori selection of FDC parameters further enhances the performance. Our results indicate that Virtual Metrology can benefit from the usage of regression methods exploiting collinearity combined with comprehensive process expert knowledge.
PECVD氮化硅层厚度预测的回归方法
基于计量数据和生产设备故障检测与分类(FDC)数据,比较了等离子体增强化学气相沉积(PECVD)双层金属钝化堆工艺中平均氮化硅帽层厚度预测的不同方法。采用不同的预测算法处理不同的FDC参数集。特别是,与小参数集相比,评估了高维多变量输入数据的使用。作为预测方法,比较了简单线性回归、多元线性回归、偏最小二乘回归和利用偏最小二乘估计算法的Ridge线性回归。回归参数优化和模型选择通过交叉验证和网格搜索进行评估,使用均方根误差。过程专家知识用于FDC参数的先验选择,进一步提高了性能。我们的结果表明,虚拟计量可以受益于利用共线性的回归方法,并结合综合的过程专家知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信