{"title":"Model-based approach to the localization of infarction","authors":"D. Farina, O. Dossel","doi":"10.1109/CIC.2007.4745449","DOIUrl":null,"url":null,"abstract":"A model-based approach to noninvasively determine the location and size of the infarction scar is proposed, that in addition helps to estimate the risk of arrhythmias. The approach is based on the optimization of an electrophysiological heart model with an introduced infarction scar to fit the multichannel ECG measured on the surface of the patient's thorax. This model delivers the distributions of transmembrane voltages (TMV) within the ventricles during a single heart cycle. The forward problem of electrocardiography is solved in order to obtain the simulated ECG of the patient. This ECG is compared with the measured one, the difference is used as the criterion for optimization of model parameters, which include the site and size of infarction scar.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
A model-based approach to noninvasively determine the location and size of the infarction scar is proposed, that in addition helps to estimate the risk of arrhythmias. The approach is based on the optimization of an electrophysiological heart model with an introduced infarction scar to fit the multichannel ECG measured on the surface of the patient's thorax. This model delivers the distributions of transmembrane voltages (TMV) within the ventricles during a single heart cycle. The forward problem of electrocardiography is solved in order to obtain the simulated ECG of the patient. This ECG is compared with the measured one, the difference is used as the criterion for optimization of model parameters, which include the site and size of infarction scar.