Uncertainty Quantification for the Extended and the Deterministic-Gain Kalman Filters

Shih-Yen Wei, J. Spall
{"title":"Uncertainty Quantification for the Extended and the Deterministic-Gain Kalman Filters","authors":"Shih-Yen Wei, J. Spall","doi":"10.23919/ACC53348.2022.9867488","DOIUrl":null,"url":null,"abstract":"This paper is aimed at characterizing the mean square error and probabilistic uncertainty of a popular class of filtering algorithms in nonlinear systems. The state estimation error of the extended Kalman filter and the deterministic-gain Kalman filter are analyzed. We allow a vector state, but assume scalar measurements. A set of conditions for the mean square error to be upper-bounded is derived. Furthermore, the probabilistic bounds for the estimation error are computed via both the moment-based approach and the stochastic comparison analysis approach. The latter provides a formal means determining uncertainty bounds, such as statistical confidence regions.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is aimed at characterizing the mean square error and probabilistic uncertainty of a popular class of filtering algorithms in nonlinear systems. The state estimation error of the extended Kalman filter and the deterministic-gain Kalman filter are analyzed. We allow a vector state, but assume scalar measurements. A set of conditions for the mean square error to be upper-bounded is derived. Furthermore, the probabilistic bounds for the estimation error are computed via both the moment-based approach and the stochastic comparison analysis approach. The latter provides a formal means determining uncertainty bounds, such as statistical confidence regions.
扩展和确定性增益卡尔曼滤波器的不确定性量化
本文的目的是描述非线性系统中一类常用滤波算法的均方误差和概率不确定性。分析了扩展卡尔曼滤波器和确定性增益卡尔曼滤波器的状态估计误差。我们允许向量状态,但假设标量测量。导出了均方误差上界的一组条件。此外,通过基于矩的方法和随机比较分析方法计算了估计误差的概率界。后者提供了确定不确定性边界的正式方法,例如统计置信区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信