An LMI criterion for chaos synchronization via the linear-state-feedback approach

Guoping Jiang, W. Zheng
{"title":"An LMI criterion for chaos synchronization via the linear-state-feedback approach","authors":"Guoping Jiang, W. Zheng","doi":"10.1109/CACSD.2004.1393904","DOIUrl":null,"url":null,"abstract":"Based on the Lyapunov stability theory in control theory, a new sufficient condition is proposed in this paper for chaos synchronization by the linear-state-feedback approach for a class of chaotic systems. By using Schur theorem and some matrix technique, this criterion is then transformed into the linear matrix inequality (LMI) form, which can be easily verified and resolved using the MATLAB LMI Toolbox. It is shown that under the proposed criterion chaos synchronization can be achieved at an exponential convergence rate. The effectiveness of the criterion proposed herein is verified and demonstrated by the chaotic Murali-Lakshmanan-Chua circuit","PeriodicalId":111199,"journal":{"name":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACSD.2004.1393904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on the Lyapunov stability theory in control theory, a new sufficient condition is proposed in this paper for chaos synchronization by the linear-state-feedback approach for a class of chaotic systems. By using Schur theorem and some matrix technique, this criterion is then transformed into the linear matrix inequality (LMI) form, which can be easily verified and resolved using the MATLAB LMI Toolbox. It is shown that under the proposed criterion chaos synchronization can be achieved at an exponential convergence rate. The effectiveness of the criterion proposed herein is verified and demonstrated by the chaotic Murali-Lakshmanan-Chua circuit
基于线性状态反馈方法的混沌同步LMI判据
基于控制论中的李雅普诺夫稳定性理论,提出了一类混沌系统采用线性状态反馈方法进行混沌同步的一个新的充分条件。利用舒尔定理和一些矩阵技术,将该判据转化为线性矩阵不等式(LMI)形式,利用MATLAB LMI工具箱可以方便地验证和求解。结果表明,在该准则下混沌同步可以以指数收敛速度实现。通过混沌Murali-Lakshmanan-Chua电路验证了该准则的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信