Geometric primitive extraction using a genetic algorithm

G. Roth, M. Levine
{"title":"Geometric primitive extraction using a genetic algorithm","authors":"G. Roth, M. Levine","doi":"10.1109/CVPR.1992.223120","DOIUrl":null,"url":null,"abstract":"A genetic algorithm based on a minimal subset representation of a geometric primitive is used to perform primitive extraction. A genetic algorithm is an optimization method that uses the metaphor of evolution, and a minimal subset is the smallest number of points necessary to define a unique instance of a geometric primitive. The approach is capable of extracting more complex primitives than the Hough transform. While similar to a hierarchical merging algorithm, it does not suffer from the problem of premature commitment.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"24 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

Abstract

A genetic algorithm based on a minimal subset representation of a geometric primitive is used to perform primitive extraction. A genetic algorithm is an optimization method that uses the metaphor of evolution, and a minimal subset is the smallest number of points necessary to define a unique instance of a geometric primitive. The approach is capable of extracting more complex primitives than the Hough transform. While similar to a hierarchical merging algorithm, it does not suffer from the problem of premature commitment.<>
利用遗传算法提取几何原语
采用基于几何原语最小子集表示的遗传算法进行原语提取。遗传算法是一种使用进化比喻的优化方法,最小子集是定义几何原语的唯一实例所需的最小个数的点。该方法能够提取比霍夫变换更复杂的原语。虽然类似于分层合并算法,但它没有过早承诺的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信