Supervised Learning in Game Data Science: Model Validation and Evaluation

M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen
{"title":"Supervised Learning in Game Data Science: Model Validation and Evaluation","authors":"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen","doi":"10.1093/oso/9780192897879.003.0008","DOIUrl":null,"url":null,"abstract":"This chapter focuses on two specific steps in the machine learning process, called model validation and model evaluation. Specifically, model validation is the step used to tune the hyperparameters of the model. Here, we often integrate a cross-validation process, which we discuss in detail in this chapter. Model evaluation, on the other hand, is the process of testing the performance of the model using unseen data, the test dataset. These processes are used to ensure that the model we developed through the algorithms discussed in Chapter 6 are reliable, given our data. The chapter will include labs to give you a practical introduction to these steps, given the modeling techniques discussed in the last chapter.","PeriodicalId":137223,"journal":{"name":"Game Data Science","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192897879.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on two specific steps in the machine learning process, called model validation and model evaluation. Specifically, model validation is the step used to tune the hyperparameters of the model. Here, we often integrate a cross-validation process, which we discuss in detail in this chapter. Model evaluation, on the other hand, is the process of testing the performance of the model using unseen data, the test dataset. These processes are used to ensure that the model we developed through the algorithms discussed in Chapter 6 are reliable, given our data. The chapter will include labs to give you a practical introduction to these steps, given the modeling techniques discussed in the last chapter.
游戏数据科学中的监督学习:模型验证和评估
本章重点介绍机器学习过程中的两个具体步骤,即模型验证和模型评估。具体来说,模型验证是用于调整模型超参数的步骤。在这里,我们经常集成一个交叉验证过程,我们将在本章中详细讨论。另一方面,模型评估是使用不可见的数据(测试数据集)测试模型性能的过程。这些过程用于确保我们通过第6章中讨论的算法开发的模型是可靠的,给定我们的数据。本章将包括一些实验,根据上一章中讨论的建模技术,为您提供这些步骤的实际介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信