A Passenger Flow Prediction Method for Bus Lines Based on Multiple Stepwise Regression Analysis

Randong Xiao, Jiajia Zhu, Zilong Zhao, Haitao Yu, Yong Du
{"title":"A Passenger Flow Prediction Method for Bus Lines Based on Multiple Stepwise Regression Analysis","authors":"Randong Xiao, Jiajia Zhu, Zilong Zhao, Haitao Yu, Yong Du","doi":"10.1109/ICIST52614.2021.9440559","DOIUrl":null,"url":null,"abstract":"Accurate bus passenger flow prediction can provide effective data support for bus operators to realize intelligent bus scheduling and scientific bus network planning. This paper collects the relevant data of bus routes in a city in 2020, uses the Person correlation coefficient to select the eigenvalue, defines the sample similarity, selects the training data based on the similarity, establishes the multiple stepwise regression model, and uses the established model to predict the adjusted routes. The experiment shows that the established regression model is suitable for the prediction of bus passenger flow.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate bus passenger flow prediction can provide effective data support for bus operators to realize intelligent bus scheduling and scientific bus network planning. This paper collects the relevant data of bus routes in a city in 2020, uses the Person correlation coefficient to select the eigenvalue, defines the sample similarity, selects the training data based on the similarity, establishes the multiple stepwise regression model, and uses the established model to predict the adjusted routes. The experiment shows that the established regression model is suitable for the prediction of bus passenger flow.
基于多元逐步回归分析的公交线路客流预测方法
准确的公交客流预测可以为公交运营企业实现公交智能调度和科学公交线网规划提供有效的数据支持。本文收集某城市2020年公交线路的相关数据,利用Person相关系数选取特征值,定义样本相似度,根据相似度选取训练数据,建立多元逐步回归模型,利用建立的模型对调整后的线路进行预测。实验表明,所建立的回归模型适用于公交客流预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信