MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DALAM PERAMALAN NILAI HARGA SAHAM PENUTUP INDEKS LQ45

Devita Priyadi, Iffatul Mardhiyah
{"title":"MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DALAM PERAMALAN NILAI HARGA SAHAM PENUTUP INDEKS LQ45","authors":"Devita Priyadi, Iffatul Mardhiyah","doi":"10.35760/ik.2021.v26i1.3695","DOIUrl":null,"url":null,"abstract":"Data indeks LQ45 dapat digunakan membantu manajer investasi, investor ataupun calon investor terkait dalam proses perencanaan dan proses pengambilan keputusan dalam membeli ataupun menjual saham. Oleh karena itu data LQ45 memiliki peran penting dalam melakukan peramalan untuk mencapai tujuan tersebut. Peramalan deret waktu (time series) menggunakan penerapan model Autoregressive Integrated Moving Average (ARIMA) untuk meramalkan nilai harga saham penutup dalam Indeks LQ45 pada data mingguan. Data yang digunakan merupakan data dari 25 November 2019 sampai dengan 30 November 2020. Hasil pengujian model terbaik adalah ARIMA(1,1,1). Model ARIMA(1,1,1) terpilih karena memenuhi asumsi dan didukung oleh nilai Adjusted R-squared, nilai S.E. of regression, Akaike Info Criterion dan Schwarz Criterion. Hasil peramalan jangka pendek selama 2 bulan ke depan (7 Desember 2020 sampai 25 Januari 2021) yang didapat dari model ARIMA(1,1,1) mendekati data aktual dengan nilai Mean Absolute Percentage Error (MAPE) yang paling kecil yaitu 18.41269.","PeriodicalId":428168,"journal":{"name":"Jurnal Ilmiah Informatika Komputer","volume":"188 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Informatika Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35760/ik.2021.v26i1.3695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data indeks LQ45 dapat digunakan membantu manajer investasi, investor ataupun calon investor terkait dalam proses perencanaan dan proses pengambilan keputusan dalam membeli ataupun menjual saham. Oleh karena itu data LQ45 memiliki peran penting dalam melakukan peramalan untuk mencapai tujuan tersebut. Peramalan deret waktu (time series) menggunakan penerapan model Autoregressive Integrated Moving Average (ARIMA) untuk meramalkan nilai harga saham penutup dalam Indeks LQ45 pada data mingguan. Data yang digunakan merupakan data dari 25 November 2019 sampai dengan 30 November 2020. Hasil pengujian model terbaik adalah ARIMA(1,1,1). Model ARIMA(1,1,1) terpilih karena memenuhi asumsi dan didukung oleh nilai Adjusted R-squared, nilai S.E. of regression, Akaike Info Criterion dan Schwarz Criterion. Hasil peramalan jangka pendek selama 2 bulan ke depan (7 Desember 2020 sampai 25 Januari 2021) yang didapat dari model ARIMA(1,1,1) mendekati data aktual dengan nilai Mean Absolute Percentage Error (MAPE) yang paling kecil yaitu 18.41269.
LQ45索引数据可以用于帮助投资经理、投资者或潜在投资者在买卖股票方面的规划和决策过程中。因此,LQ45数据在实现这一目标方面发挥着重要作用。时间级数使用Autoregressive集成动量模型(ARIMA)的应用来预测每周数据LQ45指数中总值总价的总价价值。数据是2019年11月25日至2020年11月30日的数据。最好的模型测试结果是ARIMA(1.1)。ARIMA模型(1.1)之所以被选中,是因为它符合这些假设,并得到了Adjusted R-squared值、S.E.后悔值、a - crital值和Schwarz critcon信息的支持。未来两个月的短期预测结果(2020年12月7日至2021年1月25日)将从ARIMA模型(1.1)中获得,接近实际数据,其最低值为18.41269。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信