A Gauss-Markov model formulation for the estimation of ARMA model of time-varying signals and systems

K. M. Malladi, R.V.R. kumar, K. V. Rao
{"title":"A Gauss-Markov model formulation for the estimation of ARMA model of time-varying signals and systems","authors":"K. M. Malladi, R.V.R. kumar, K. V. Rao","doi":"10.1109/TFSA.1998.721510","DOIUrl":null,"url":null,"abstract":"A Gauss-Markov model is formulated to estimate the model of a non-stationary signal. The time-varying parameters of the model are modelled as stochastic processes. A time-varying ARMA model is considered to represent the non-stationary process. Furthermore, in this work, a unified method for the optimal estimation of both the time-varying parameters and their corresponding stochastic model parameters is presented. This method utilises the proposed Gauss-Markov model for the estimation process through the extended Kalman filter (EKF).","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A Gauss-Markov model is formulated to estimate the model of a non-stationary signal. The time-varying parameters of the model are modelled as stochastic processes. A time-varying ARMA model is considered to represent the non-stationary process. Furthermore, in this work, a unified method for the optimal estimation of both the time-varying parameters and their corresponding stochastic model parameters is presented. This method utilises the proposed Gauss-Markov model for the estimation process through the extended Kalman filter (EKF).
时变信号和系统ARMA模型估计的高斯-马尔可夫模型
建立了高斯-马尔可夫模型来估计非平稳信号的模型。模型的时变参数被建模为随机过程。考虑时变ARMA模型来表示非平稳过程。此外,本文还提出了一种统一的时变参数及其对应的随机模型参数的最优估计方法。该方法利用提出的高斯-马尔可夫模型通过扩展卡尔曼滤波(EKF)进行估计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信