Breast Lesions Segmentation using Dual-level UNet (DL-UNet)

Yanjiao Zhao, Zhihui Lai, Linlin Shen, Heng Kong
{"title":"Breast Lesions Segmentation using Dual-level UNet (DL-UNet)","authors":"Yanjiao Zhao, Zhihui Lai, Linlin Shen, Heng Kong","doi":"10.1109/CBMS55023.2022.00067","DOIUrl":null,"url":null,"abstract":"Breast disease is one of the primary diseases endangering women's health. Accurate segmentation of breast lesions can help doctors diagnose breast diseases. However, the size and morphology of breast lesions are different, and the intensity of breast tissue is uneven. Thus, it is challenging to segment the lesion area accurately. In this paper, we propose Dual-scale Feature Fusion (DSFF) module and Edgeloss to segment breast lesions. The DSFF module aims to integrate two-scale features and design another effective skip connection scheme to reduce false positive regions. To solve the problem of unclear segmentation boundary, we design Edgeloss for additional supervision on the boundary region to obtain a finer segmentation boundary. The experiment results show that the proposed DL-UNet with the DSFF module and new Edgeloss performs best in several classic networks.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"633 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Breast disease is one of the primary diseases endangering women's health. Accurate segmentation of breast lesions can help doctors diagnose breast diseases. However, the size and morphology of breast lesions are different, and the intensity of breast tissue is uneven. Thus, it is challenging to segment the lesion area accurately. In this paper, we propose Dual-scale Feature Fusion (DSFF) module and Edgeloss to segment breast lesions. The DSFF module aims to integrate two-scale features and design another effective skip connection scheme to reduce false positive regions. To solve the problem of unclear segmentation boundary, we design Edgeloss for additional supervision on the boundary region to obtain a finer segmentation boundary. The experiment results show that the proposed DL-UNet with the DSFF module and new Edgeloss performs best in several classic networks.
基于双级UNet的乳腺病变分割
乳腺疾病是危害妇女健康的主要疾病之一。乳腺病变的准确分割可以帮助医生诊断乳腺疾病。然而,乳腺病变的大小和形态不同,乳腺组织的强度也不均匀。因此,准确分割病变区域是一项挑战。本文提出了双尺度特征融合(DSFF)模块和edge - loss对乳腺病变进行分割。DSFF模块旨在整合双尺度特征,设计另一种有效的跳接方案,以减少误报区域。为了解决分割边界不清晰的问题,我们设计了Edgeloss对边界区域进行额外的监督,以获得更精细的分割边界。实验结果表明,采用DSFF模块和新边缘损耗的DL-UNet在几种经典网络中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信