{"title":"Millimeter Waves, Millisecond Delays","authors":"S. Panwar","doi":"10.1145/3264492.3264504","DOIUrl":null,"url":null,"abstract":"Two simultaneous revolutionary changes are occurring in networking: the advent of mmWave networks and the advent of applications that require end-to-end delays of the order of a few milliseconds. mmWave is the first physical layer technology that promises huge wireless bandwidth, but with very poor reliability as a result of its vulnerability to blockage (optical fiber offers high reliability and high bandwidth; sub-6Ghz microwave networks offer lower bandwidth but graceful bandwidth degradation that can be mitigated). The emergence of the need for ultra-low delays for haptic communications and control loops in self-driving cars and other sensor-based applications, has radically changed the requirements for layers above the physical layer. These two changes transform standard networking problems and will lead to a new wave of research. Examples will be used to illustrate this paradigm shift.","PeriodicalId":314860,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264492.3264504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two simultaneous revolutionary changes are occurring in networking: the advent of mmWave networks and the advent of applications that require end-to-end delays of the order of a few milliseconds. mmWave is the first physical layer technology that promises huge wireless bandwidth, but with very poor reliability as a result of its vulnerability to blockage (optical fiber offers high reliability and high bandwidth; sub-6Ghz microwave networks offer lower bandwidth but graceful bandwidth degradation that can be mitigated). The emergence of the need for ultra-low delays for haptic communications and control loops in self-driving cars and other sensor-based applications, has radically changed the requirements for layers above the physical layer. These two changes transform standard networking problems and will lead to a new wave of research. Examples will be used to illustrate this paradigm shift.