Smart load-balancer for web applications

Gandhimathi Velusamy, R. Lent
{"title":"Smart load-balancer for web applications","authors":"Gandhimathi Velusamy, R. Lent","doi":"10.1145/3128128.3128132","DOIUrl":null,"url":null,"abstract":"A resource distribution helps to improve the scalability and fault-tolerance of many types of information systems, and can offer the responsiveness needed by smart environments. When more than one information source is available, a load balancer distributes the user workload among the multiple sources. However, deciding the best server assignment for each user request is a difficult task when the system contains heterogeneous elements and operates in a dynamic environment. We develop an automata-based approach to the load balancing problem that continuously adjusts the selection rate of servers based on observed information retrieval performance. We evaluate different reinforcement methods to identify the most suitable one for this task, including the P-model Reward-Penalty-ε (RP-ε), and S-model Reward-Penalty-epsilon (SRP-ε). We develop a plug-in for Apache Traffic Server and use a testbed to evaluate the performance of these methods compared to common load-balancing approaches: random, round robin, least connection, and greedy selection.","PeriodicalId":362403,"journal":{"name":"Proceedings of the 2017 International Conference on Smart Digital Environment","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Smart Digital Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128128.3128132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A resource distribution helps to improve the scalability and fault-tolerance of many types of information systems, and can offer the responsiveness needed by smart environments. When more than one information source is available, a load balancer distributes the user workload among the multiple sources. However, deciding the best server assignment for each user request is a difficult task when the system contains heterogeneous elements and operates in a dynamic environment. We develop an automata-based approach to the load balancing problem that continuously adjusts the selection rate of servers based on observed information retrieval performance. We evaluate different reinforcement methods to identify the most suitable one for this task, including the P-model Reward-Penalty-ε (RP-ε), and S-model Reward-Penalty-epsilon (SRP-ε). We develop a plug-in for Apache Traffic Server and use a testbed to evaluate the performance of these methods compared to common load-balancing approaches: random, round robin, least connection, and greedy selection.
用于web应用程序的智能负载平衡器
资源分布有助于提高许多类型的信息系统的可伸缩性和容错性,并且可以提供智能环境所需的响应性。当有多个信息源可用时,负载平衡器会在多个信息源之间分配用户工作负载。然而,当系统包含异构元素并在动态环境中运行时,为每个用户请求决定最佳服务器分配是一项困难的任务。我们开发了一种基于自动机的方法来解决负载平衡问题,该方法根据观察到的信息检索性能不断调整服务器的选择率。我们评估了不同的强化方法,以确定最适合该任务的强化方法,包括p模型奖励-惩罚-ε (RP-ε)和s模型奖励-惩罚-ε (SRP-ε)。我们为Apache Traffic Server开发了一个插件,并使用一个测试平台来评估这些方法与常见负载平衡方法(随机、轮询、最小连接和贪婪选择)相比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信