Online Character Recognition Using Elastic Curvature Matching

Jong-Hoon Ahn, Jihyun Lee, Jinsu Jo, Y. Choi, Yillbyung Lee
{"title":"Online Character Recognition Using Elastic Curvature Matching","authors":"Jong-Hoon Ahn, Jihyun Lee, Jinsu Jo, Y. Choi, Yillbyung Lee","doi":"10.1109/ICAPR.2009.94","DOIUrl":null,"url":null,"abstract":"An efficient method for online character recognition is suggested. It consists of two steps: curvature extraction and curvature matching. The online signal with a single stroke is a sequence of two-dimensional positional vectors whereas its curvature is one-dimensional. Elastic curvature matching is basically a 1D-to-1D matching problem between curvatures of reference and test characters, and one-dimensionality of curvature makes the matching problem more quick and easy than 2D-to-2D matching. We show the results obtained from applying it to online digit recognition and discuss them.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An efficient method for online character recognition is suggested. It consists of two steps: curvature extraction and curvature matching. The online signal with a single stroke is a sequence of two-dimensional positional vectors whereas its curvature is one-dimensional. Elastic curvature matching is basically a 1D-to-1D matching problem between curvatures of reference and test characters, and one-dimensionality of curvature makes the matching problem more quick and easy than 2D-to-2D matching. We show the results obtained from applying it to online digit recognition and discuss them.
基于弹性曲率匹配的在线字符识别
提出了一种有效的在线字符识别方法。它包括两个步骤:曲率提取和曲率匹配。单笔画的在线信号是一个二维位置向量序列,而其曲率是一维的。弹性曲率匹配基本上是参考曲率与测试特征之间的一维到一维的匹配问题,曲率的一维性使得匹配问题比二维到二维的匹配更加快速和容易。最后给出了将其应用于在线数字识别的结果,并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信