Hardware Implementation of Fixed-Point Convolutional Neural Network For Classification

Safa Bouguezzi, H. Faiedh, C. Souani
{"title":"Hardware Implementation of Fixed-Point Convolutional Neural Network For Classification","authors":"Safa Bouguezzi, H. Faiedh, C. Souani","doi":"10.1109/DTS52014.2021.9498072","DOIUrl":null,"url":null,"abstract":"The Convolutional Neural Network (CNN) dominates the research area of Field Programmable Gate Arrays (FPGAs) and demonstrates its efficiency on computer vision applications. The correct predicted rate of the CNN is highly dependent on the selection of the activation functions. Thus, we intend to deploy a CNN model on Virtex-7 while varying the activation function such as ReLU, PReLU, and Tanh Exponential (TanhExp) activation functions. To this end, we will use a fixed-point representation concerning the arithmetic numbers and the piecewise linear approximation regarding the TanhExp activation function. We present the speed, accuracy and hardware resources of each model of the CNN.","PeriodicalId":158426,"journal":{"name":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTS52014.2021.9498072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Convolutional Neural Network (CNN) dominates the research area of Field Programmable Gate Arrays (FPGAs) and demonstrates its efficiency on computer vision applications. The correct predicted rate of the CNN is highly dependent on the selection of the activation functions. Thus, we intend to deploy a CNN model on Virtex-7 while varying the activation function such as ReLU, PReLU, and Tanh Exponential (TanhExp) activation functions. To this end, we will use a fixed-point representation concerning the arithmetic numbers and the piecewise linear approximation regarding the TanhExp activation function. We present the speed, accuracy and hardware resources of each model of the CNN.
用于分类的定点卷积神经网络的硬件实现
卷积神经网络(CNN)在现场可编程门阵列(fpga)的研究领域占据主导地位,并证明了其在计算机视觉应用中的有效性。CNN的正确预测率高度依赖于激活函数的选择。因此,我们打算在Virtex-7上部署CNN模型,同时改变激活函数,如ReLU, PReLU和TanhExp (TanhExp)激活函数。为此,我们将使用关于算术数的不动点表示和关于TanhExp激活函数的分段线性逼近。给出了CNN各模型的速度、精度和硬件资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信