Hot Electron Generation and Laser–Plasma Instabilities in Shock Ignition Relevant Experiments

A. Raymond, C. Krauland, E. Hahn, J. Kim, F. Beg, N. Alfonso, S. Fess, J. Peebles, M. Wei, W. Theobald, J. Palastro, C. Ren, C. Stoeckl, D. Haberberger, T. Filkins, J. Katz, A. Hansen, D. Turnbull, R. Betti, R. Follett, M. Campbell, J. Trela, D. Batani, R. Scott, L. Antonelli
{"title":"Hot Electron Generation and Laser–Plasma Instabilities in Shock Ignition Relevant Experiments","authors":"A. Raymond, C. Krauland, E. Hahn, J. Kim, F. Beg, N. Alfonso, S. Fess, J. Peebles, M. Wei, W. Theobald, J. Palastro, C. Ren, C. Stoeckl, D. Haberberger, T. Filkins, J. Katz, A. Hansen, D. Turnbull, R. Betti, R. Follett, M. Campbell, J. Trela, D. Batani, R. Scott, L. Antonelli","doi":"10.1109/ICOPS45751.2022.9812983","DOIUrl":null,"url":null,"abstract":"Shock ignition (SI) is an inertial confinement fusion schema that uses a strong convergent shock driven by a high intensity ~10 16 W/cm 2 laser pulse to ignite a pre-compressed fusion capsule. Understanding nonlinear laser-plasma instabilities and hot electron generation is critical towards maximizing the coupling of laser energy into the target during both the high intensity and plasma formation pulses. A series of experiments on the OMEGA EP and OMEGA-60 laser facilities have explored a variety of regimes relevant to shock ignition, with experimental parameters informed iteratively by radiation hydrodynamic simulations and previous experiments. Characterization of a coronal plasma with and without a sequential high intensity pulse was performed utilizing Thomson scattering on OMEGA 60 at variable focal standoff from the initial target surface between 300 – 1100 μm, corresponding to plasma densities between n crit to n crit /10. High intensity laser coupling was additionally studied using backscatter spectrum diagnostics. Derived results will be presented and compared to hydrodynamic simulation results. In addition, simultaneously collected shock breakout measurements are presented using VISAR and SOP diagnostic techniques and are additionally compared to expectations. Such validations of simulation results will aid to inform future experiments conducted in this regime, while the data reveals further insights into the underlying dynamics pivotal to the shock ignition concept.\\","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOPS45751.2022.9812983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shock ignition (SI) is an inertial confinement fusion schema that uses a strong convergent shock driven by a high intensity ~10 16 W/cm 2 laser pulse to ignite a pre-compressed fusion capsule. Understanding nonlinear laser-plasma instabilities and hot electron generation is critical towards maximizing the coupling of laser energy into the target during both the high intensity and plasma formation pulses. A series of experiments on the OMEGA EP and OMEGA-60 laser facilities have explored a variety of regimes relevant to shock ignition, with experimental parameters informed iteratively by radiation hydrodynamic simulations and previous experiments. Characterization of a coronal plasma with and without a sequential high intensity pulse was performed utilizing Thomson scattering on OMEGA 60 at variable focal standoff from the initial target surface between 300 – 1100 μm, corresponding to plasma densities between n crit to n crit /10. High intensity laser coupling was additionally studied using backscatter spectrum diagnostics. Derived results will be presented and compared to hydrodynamic simulation results. In addition, simultaneously collected shock breakout measurements are presented using VISAR and SOP diagnostic techniques and are additionally compared to expectations. Such validations of simulation results will aid to inform future experiments conducted in this regime, while the data reveals further insights into the underlying dynamics pivotal to the shock ignition concept.\
激波点火实验中热电子的产生和激光等离子体的不稳定性
激波点火(Shock ignition, SI)是一种惯性约束核聚变方案,它利用高强度~10 16 W/ cm2激光脉冲驱动的强会聚激波来点燃预压缩的核聚变胶囊。了解激光等离子体的非线性不稳定性和热电子的产生对于在高强度和等离子体形成脉冲期间最大限度地将激光能量耦合到目标中至关重要。在OMEGA EP和OMEGA-60激光设备上进行的一系列实验探索了与激波点火相关的各种制度,实验参数通过辐射流体动力学模拟和先前的实验迭代获得。在距离初始目标表面300 ~ 1100 μm,对应于等离子体密度在n crit ~ n crit /10之间的可变焦距范围内,利用OMEGA 60上的汤姆森散射,对有和没有连续高强度脉冲的日冕等离子体进行了表征。另外,利用后向散射光谱诊断技术研究了高强度激光耦合。将给出推导结果并与水动力模拟结果进行比较。此外,还使用VISAR和SOP诊断技术提供了同时收集的冲击破裂测量数据,并与预期进行了比较。这种模拟结果的验证将有助于为在这种情况下进行的未来实验提供信息,而数据揭示了对激波点火概念至关重要的潜在动力学的进一步见解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信