Joint Communication and Computing Resource Allocation over Cell-Free Massive MIMO-enabled Mobile Edge Network: A Deep Reinforcement Learning-based Approach

Fitsum Debebe Tilahun, A. T. Abebe, C. Kang
{"title":"Joint Communication and Computing Resource Allocation over Cell-Free Massive MIMO-enabled Mobile Edge Network: A Deep Reinforcement Learning-based Approach","authors":"Fitsum Debebe Tilahun, A. T. Abebe, C. Kang","doi":"10.1109/ICAIIC51459.2021.9415215","DOIUrl":null,"url":null,"abstract":"We present a cell-free massive MIMO-enabled mo-edge network with the aim of meeting the stringent rements of the newly introduced multimedia services. For considered framework, we propose a distributed deep-orcement learning (DRL)-based joint communication and uting resource allocation wherein each user is implemented n independent agent to make joint resource allocation ion relying on local observation only. The simulation results nstrate that the agents learn robust policies that reduce gy consumption while attaining the ultra-low delay requires of the advanced services.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a cell-free massive MIMO-enabled mo-edge network with the aim of meeting the stringent rements of the newly introduced multimedia services. For considered framework, we propose a distributed deep-orcement learning (DRL)-based joint communication and uting resource allocation wherein each user is implemented n independent agent to make joint resource allocation ion relying on local observation only. The simulation results nstrate that the agents learn robust policies that reduce gy consumption while attaining the ultra-low delay requires of the advanced services.
无小区大规模mimo移动边缘网络联合通信和计算资源分配:一种基于深度强化学习的方法
为了满足新引入的多媒体业务的严格要求,我们提出了一种无蜂窝大规模mimo支持的mo-edge网络。对于考虑的框架,我们提出了一种基于分布式深度强制学习(DRL)的联合通信和资源分配,其中每个用户实现一个独立的代理,仅依靠局部观察进行联合资源分配。仿真结果表明,智能体在获得高级业务的超低延迟要求的同时,学习了降低能耗的鲁棒策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信