Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic

A. Morozov, O. Pochinka
{"title":"Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic","authors":"A. Morozov, O. Pochinka","doi":"10.15507/2079-6900.22.202001.71-80","DOIUrl":null,"url":null,"abstract":"In this paper we consider class of orientation-preserving Morse-Smale diffeomorphisms f, given on orientable surface M2. In their articles A.A.~Bezdenezhnich and V. Z. Grines has shown, that such diffeomorfisms contain finite number of heteroclinic orbits. Moreover, the problem of classification for such diffeomorphisms is reduced to the problem of distinguishing orientable graphs with substitutions describing the geometry of heteroclinic intersections. Howewer, these graphs generally do not allow polynomial distinguishing algorithms. In this paper, we propose a new approach to the classification of such cascades. To this end, each considered diffeomorphism f is associated with a graph whose embeddablility in the ambient surface makes it possible to construct an effective algoritm for distinguishing such graphs.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.22.202001.71-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider class of orientation-preserving Morse-Smale diffeomorphisms f, given on orientable surface M2. In their articles A.A.~Bezdenezhnich and V. Z. Grines has shown, that such diffeomorfisms contain finite number of heteroclinic orbits. Moreover, the problem of classification for such diffeomorphisms is reduced to the problem of distinguishing orientable graphs with substitutions describing the geometry of heteroclinic intersections. Howewer, these graphs generally do not allow polynomial distinguishing algorithms. In this paper, we propose a new approach to the classification of such cascades. To this end, each considered diffeomorphism f is associated with a graph whose embeddablility in the ambient surface makes it possible to construct an effective algoritm for distinguishing such graphs.
可定向异斜曲面上morse - small微分同态的组合不变量
本文考虑了可定向曲面M2上一类保持取向的莫尔斯-小微分同态f。A.A.~Bezdenezhnich和V. Z. Grines在他们的文章中已经证明,这种差分同形包含有限数量的异斜轨道。此外,这类微分同胚的分类问题被简化为用描述异斜交点几何的替换来区分可定向图的问题。然而,这些图通常不允许多项式区分算法。在本文中,我们提出了一种新的方法来分类这种级联。为此,每个考虑的差分同态f都与一个图相关联,该图在环境表面中的可嵌入性使得构建一个有效的算法来区分此类图成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信