{"title":"Lightspeech: Lightweight Non-Autoregressive Multi-Speaker Text-To-Speech","authors":"Song Li, Beibei Ouyang, Lin Li, Q. Hong","doi":"10.1109/SLT48900.2021.9383562","DOIUrl":null,"url":null,"abstract":"With the development of deep learning, end-to-end neural text-to-speech systems have achieved significant improvements on high-quality speech synthesis. However, most of these systems are attention-based autoregressive models, resulting in slow synthesis speed and large model parameters. In this paper, we propose a new lightweight non-autoregressive multi-speaker speech synthesis system, named LightSpeech, which utilizes the lightweight feedforward neural networks to accelerate synthesis and reduce the amount of parameters. With the speaker embedding, LightSpeech achieves multi-speaker speech synthesis extremely quickly. Experiments on the LibriTTS dataset show that, compared with FastSpeech, our smallest LightSpeech model achieves a 9.27x Mel-spectrogram generation acceleration on CPU, and the model size and parameters are compressed by 37.06x and 37.36x, respectively.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
With the development of deep learning, end-to-end neural text-to-speech systems have achieved significant improvements on high-quality speech synthesis. However, most of these systems are attention-based autoregressive models, resulting in slow synthesis speed and large model parameters. In this paper, we propose a new lightweight non-autoregressive multi-speaker speech synthesis system, named LightSpeech, which utilizes the lightweight feedforward neural networks to accelerate synthesis and reduce the amount of parameters. With the speaker embedding, LightSpeech achieves multi-speaker speech synthesis extremely quickly. Experiments on the LibriTTS dataset show that, compared with FastSpeech, our smallest LightSpeech model achieves a 9.27x Mel-spectrogram generation acceleration on CPU, and the model size and parameters are compressed by 37.06x and 37.36x, respectively.