Investigating Genetic Network Programming for Multiple Nest Foraging

Fred D. Foss, Truls Stenrud, P. Haddow
{"title":"Investigating Genetic Network Programming for Multiple Nest Foraging","authors":"Fred D. Foss, Truls Stenrud, P. Haddow","doi":"10.1109/SSCI50451.2021.9659926","DOIUrl":null,"url":null,"abstract":"Genetic Network Programming is a relatively unexplored evolutionary algorithm, particularly for more advanced tasks. Foraging is a challenging domain within swarm robotics, since it requires an aptitude for multiple rudimentary behaviours. The work herein thus investigates the application of Genetic Network Programming for multiple nest foraging. Further, a variant of Genetic Network Programming, which incorporates neural network benefits is proposed and evaluated. The results are compared to state-of-the-art foraging algorithms including the generic Neuro-evolution of Augmented Technologies and Novelty Search algorithms and the more application specific Multiple-Place Foraging Algorithm. Results indicate that Genetic Network Programming shows promise.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic Network Programming is a relatively unexplored evolutionary algorithm, particularly for more advanced tasks. Foraging is a challenging domain within swarm robotics, since it requires an aptitude for multiple rudimentary behaviours. The work herein thus investigates the application of Genetic Network Programming for multiple nest foraging. Further, a variant of Genetic Network Programming, which incorporates neural network benefits is proposed and evaluated. The results are compared to state-of-the-art foraging algorithms including the generic Neuro-evolution of Augmented Technologies and Novelty Search algorithms and the more application specific Multiple-Place Foraging Algorithm. Results indicate that Genetic Network Programming shows promise.
多巢觅食的遗传网络规划研究
遗传网络规划是一种相对未开发的进化算法,特别是对于更高级的任务。在群体机器人中,觅食是一个具有挑战性的领域,因为它需要具备多种基本行为的能力。本文研究了遗传网络规划在多巢觅食中的应用。在此基础上,提出并评价了一种结合神经网络优势的遗传网络规划方法。将结果与最先进的觅食算法进行比较,包括通用的增强技术神经进化和新颖性搜索算法以及更具体的多地点觅食算法。结果表明,遗传网络规划具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信