An Automatic Updating Perceptron-Based System for Malware Detection

Marius Barat, Dumitru-Bogdan Prelipcean, Dragos Gavrilut
{"title":"An Automatic Updating Perceptron-Based System for Malware Detection","authors":"Marius Barat, Dumitru-Bogdan Prelipcean, Dragos Gavrilut","doi":"10.1109/SYNASC.2013.47","DOIUrl":null,"url":null,"abstract":"In the increasing number of online threats and shape-shifting malware, the use of machine learning techniques has a good impact. To keep the efficiency of these techniques, the training and adaptation schedule must be constant. In this paper we study the behaviour of an automatic updating perceptron, with variable training frequency and using as input samples with increasing freshness. Other variable parameters are the features set and training set dimensions. The collected samples, clean and malicious are from the last year. We conclude with the observed optimal parameters which can be used to obtain a good proactivity.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the increasing number of online threats and shape-shifting malware, the use of machine learning techniques has a good impact. To keep the efficiency of these techniques, the training and adaptation schedule must be constant. In this paper we study the behaviour of an automatic updating perceptron, with variable training frequency and using as input samples with increasing freshness. Other variable parameters are the features set and training set dimensions. The collected samples, clean and malicious are from the last year. We conclude with the observed optimal parameters which can be used to obtain a good proactivity.
基于感知机的恶意软件自动更新检测系统
在越来越多的在线威胁和变形恶意软件中,机器学习技术的使用具有良好的影响。为了保持这些技术的有效性,训练和适应计划必须保持不变。在本文中,我们研究了一个自动更新感知器的行为,它具有可变的训练频率,并使用新鲜度不断增加的样本作为输入。其他可变参数是特征集和训练集维度。收集的样本,干净的和恶意的都是去年的。我们用观察到的最优参数进行了总结,这些参数可用于获得良好的主动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信