Modeling of Transport Processes Within a Molten Carbonate Fuel Cell Stack

Z. Ma, S. Jeter, S. Abdel-Khalik
{"title":"Modeling of Transport Processes Within a Molten Carbonate Fuel Cell Stack","authors":"Z. Ma, S. Jeter, S. Abdel-Khalik","doi":"10.1115/imece2001/htd-24268","DOIUrl":null,"url":null,"abstract":"\n Concern over global warming due to emission of green house gases has generated considerable interests and intensive development of fuel cells. In order to reduce the fuel cell manufacturing costs and to improve its performance and reliability, a better understanding of the fuel and oxidant species transport processes within fuel cell stack is important for fuel cell design. Fuel and oxidant stream flow distributions within a stack have significant impact on fuel cell performance and efficiency. To this end, this investigation presents the effects of the fuel and oxidant flow distributions on fuel cell stack performance with a model of fluid flow, heat and mass transfer including the electrochemical reaction, within a molten carbonate fuel cell under different gas supply conditions.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concern over global warming due to emission of green house gases has generated considerable interests and intensive development of fuel cells. In order to reduce the fuel cell manufacturing costs and to improve its performance and reliability, a better understanding of the fuel and oxidant species transport processes within fuel cell stack is important for fuel cell design. Fuel and oxidant stream flow distributions within a stack have significant impact on fuel cell performance and efficiency. To this end, this investigation presents the effects of the fuel and oxidant flow distributions on fuel cell stack performance with a model of fluid flow, heat and mass transfer including the electrochemical reaction, within a molten carbonate fuel cell under different gas supply conditions.
熔融碳酸盐燃料电池堆内传输过程的建模
由于温室气体的排放导致全球变暖,燃料电池引起了人们的广泛关注和大力发展。为了降低燃料电池的制造成本,提高燃料电池的性能和可靠性,更好地了解燃料和氧化剂在燃料电池堆中的传输过程对燃料电池的设计至关重要。燃料和氧化剂在堆内的流动分布对燃料电池的性能和效率有重要的影响。为此,本研究利用熔融碳酸盐燃料电池在不同供气条件下的流体流动、传热和传质(包括电化学反应)模型,研究了燃料和氧化剂流动分布对燃料电池堆性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信