A neurocomputing approach for anomaly detection of Mt. Merapi monitoring activity

Paramitha Nerisafitra, T. D. Wulan
{"title":"A neurocomputing approach for anomaly detection of Mt. Merapi monitoring activity","authors":"Paramitha Nerisafitra, T. D. Wulan","doi":"10.1109/CAIPT.2017.8320704","DOIUrl":null,"url":null,"abstract":"Monitoring volcanic activity is extremely important to detect anomalies that may changes in the activity of Mt. Merapi. In this paper we proposed Multi Layer Perceptron (MLP) method to detect anomaly and to determine activities of each quake in seismic data. This method that has been developed in this research has been tasted against such several types of quakes as volcanic A (VA), volcanic B (VB), multiphase (MP), and avalance using data of the same time period. The experimetal results showed an average accuracy of 81,7 % in determining the activity of each quake type of Mt. Merapi seismic activity.","PeriodicalId":351075,"journal":{"name":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIPT.2017.8320704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring volcanic activity is extremely important to detect anomalies that may changes in the activity of Mt. Merapi. In this paper we proposed Multi Layer Perceptron (MLP) method to detect anomaly and to determine activities of each quake in seismic data. This method that has been developed in this research has been tasted against such several types of quakes as volcanic A (VA), volcanic B (VB), multiphase (MP), and avalance using data of the same time period. The experimetal results showed an average accuracy of 81,7 % in determining the activity of each quake type of Mt. Merapi seismic activity.
默拉皮火山监测活动异常检测的神经计算方法
监测火山活动对于发现默拉皮火山活动可能发生变化的异常非常重要。本文提出了一种多层感知器(MLP)方法来检测地震资料中的异常,并确定各地震的活动。利用同一时期的数据,对A型火山地震(VA)、B型火山地震(VB)、多相地震(MP)和雪崩地震等几种地震类型进行了试验。实验结果表明,在确定默拉皮火山地震活动的每种地震类型的活动性方面,平均精度为81.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信