M. Kamogawa, Kosei Ohhara, Sayako Ueda, K. Miura, K. Yajima, S. Hashimoto, M. Nakamura, Y. Kakinami, H. Furutani, M. Uematsu
{"title":"Simultaneous Observations of Atmospheric Electric Field, Aerosols, and Clouds on the R/V Hakuho Maru over the Pacific Ocean","authors":"M. Kamogawa, Kosei Ohhara, Sayako Ueda, K. Miura, K. Yajima, S. Hashimoto, M. Nakamura, Y. Kakinami, H. Furutani, M. Uematsu","doi":"10.1541/JAE.34.21","DOIUrl":null,"url":null,"abstract":"There is an ionospheric potential between conductive solid-earth and ionosphere which reaches approximately 250 kV. The ionospheric potential is generated by the spherical shell capacitance of which is formed by positively charged ionosphere and negatively charged solid-earth. The capacitance is charged and discharged by the global thunderstorm activity and air-earth current in the fair weather, respectively. This large-scale electric circuit is termed a global electric circuit. Recently, it is pointed out that the variation of ionospheric potential is associated with global climate change, so that some of scientists started revisiting this traditional topic. In order to promote their resurvey, we show that a ground-based measurement of atmospheric electric field highly affected by atmospheric clouds, aerosols, and so on is still a useful tool to measure the variation of ionospheric potential through the simultaneous observations of ground-based atmospheric electric field, aerosols, and clouds on the R/V Hakuho Maru over the Pacific Ocean. In the period we obtained Carnegie curve, the observed AEF did not correlate to atmospheric aerosol concentration. The most plausible interpretation is that the observed variation of AEF reflected the variation of ionosphere potential.","PeriodicalId":274637,"journal":{"name":"Journal of atmospheric electricity","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of atmospheric electricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/JAE.34.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is an ionospheric potential between conductive solid-earth and ionosphere which reaches approximately 250 kV. The ionospheric potential is generated by the spherical shell capacitance of which is formed by positively charged ionosphere and negatively charged solid-earth. The capacitance is charged and discharged by the global thunderstorm activity and air-earth current in the fair weather, respectively. This large-scale electric circuit is termed a global electric circuit. Recently, it is pointed out that the variation of ionospheric potential is associated with global climate change, so that some of scientists started revisiting this traditional topic. In order to promote their resurvey, we show that a ground-based measurement of atmospheric electric field highly affected by atmospheric clouds, aerosols, and so on is still a useful tool to measure the variation of ionospheric potential through the simultaneous observations of ground-based atmospheric electric field, aerosols, and clouds on the R/V Hakuho Maru over the Pacific Ocean. In the period we obtained Carnegie curve, the observed AEF did not correlate to atmospheric aerosol concentration. The most plausible interpretation is that the observed variation of AEF reflected the variation of ionosphere potential.