Exploring Image Reconstruction Attack in Deep Learning Computation Offloading

Hyunseok Oh, Youngki Lee
{"title":"Exploring Image Reconstruction Attack in Deep Learning Computation Offloading","authors":"Hyunseok Oh, Youngki Lee","doi":"10.1145/3325413.3329791","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) computation offloading is commonly adopted to enable the use of computation-intensive DL techniques on resource-constrained devices. However, sending private user data to an external server raises a serious privacy concern. In this paper, we introduce a privacy-invading input reconstruction method which utilizes intermediate data of the DL computation pipeline. In doing so, we first define a Peak Signal-to-Noise Ratio (PSNR)-based metric for assessing input reconstruction quality. Then, we simulate a privacy attack on diverse DL models to find out the relationship between DL model structures and performance of privacy attacks. Finally, we provide several insights on DL model structure design to prevent reconstruction-based privacy attacks: using skip-connection, making model deeper, including various DL operations such as inception module.","PeriodicalId":164793,"journal":{"name":"The 3rd International Workshop on Deep Learning for Mobile Systems and Applications - EMDL '19","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Workshop on Deep Learning for Mobile Systems and Applications - EMDL '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325413.3329791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep learning (DL) computation offloading is commonly adopted to enable the use of computation-intensive DL techniques on resource-constrained devices. However, sending private user data to an external server raises a serious privacy concern. In this paper, we introduce a privacy-invading input reconstruction method which utilizes intermediate data of the DL computation pipeline. In doing so, we first define a Peak Signal-to-Noise Ratio (PSNR)-based metric for assessing input reconstruction quality. Then, we simulate a privacy attack on diverse DL models to find out the relationship between DL model structures and performance of privacy attacks. Finally, we provide several insights on DL model structure design to prevent reconstruction-based privacy attacks: using skip-connection, making model deeper, including various DL operations such as inception module.
深度学习计算卸载中的图像重建攻击研究
深度学习(DL)计算卸载通常用于在资源受限的设备上使用计算密集型DL技术。然而,将私人用户数据发送到外部服务器会引起严重的隐私问题。本文介绍了一种利用深度学习计算管道中间数据的侵犯隐私的输入重构方法。为此,我们首先定义了一个基于峰值信噪比(PSNR)的指标,用于评估输入重建质量。然后,我们在不同的深度学习模型上模拟隐私攻击,找出深度学习模型结构与隐私攻击性能之间的关系。最后,我们提供了一些关于深度学习模型结构设计的见解,以防止基于重建的隐私攻击:使用跳过连接,使模型更深入,包括各种深度学习操作,如初始模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信