Eye Gaze on Scatterplot: Concept and First Results of Recommendations for Exploration of SPLOMs Using Implicit Data Selection

Nils Rodrigues, Lin Shao, Jiazhen Yan, T. Schreck, D. Weiskopf
{"title":"Eye Gaze on Scatterplot: Concept and First Results of Recommendations for Exploration of SPLOMs Using Implicit Data Selection","authors":"Nils Rodrigues, Lin Shao, Jiazhen Yan, T. Schreck, D. Weiskopf","doi":"10.1145/3517031.3531165","DOIUrl":null,"url":null,"abstract":"We propose a three-step concept and visual design for supporting the visual exploration of high-dimensional data in scatterplots through eye-tracking. First, we extract subsets in the underlying data using existing classifications, automated clustering algorithms, or eye-tracking. For the latter, we map gaze to the underlying data dimensions in the scatterplot. Clusters of data points that have been the focus of the viewers’ gaze are marked as clusters of interest (eye-mind hypothesis). In a second step, our concept extracts various properties from statistics and scagnostics from the clusters. The third step uses these measures to compare the current data clusters from the main scatterplot to the same data in other dimensions. The results enable analysts to retrieve similar or dissimilar views as guidance to explore the entire data set. We provide a proof-of-concept implementation as a test bench and describe a use case to show a practical application and initial results.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3531165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a three-step concept and visual design for supporting the visual exploration of high-dimensional data in scatterplots through eye-tracking. First, we extract subsets in the underlying data using existing classifications, automated clustering algorithms, or eye-tracking. For the latter, we map gaze to the underlying data dimensions in the scatterplot. Clusters of data points that have been the focus of the viewers’ gaze are marked as clusters of interest (eye-mind hypothesis). In a second step, our concept extracts various properties from statistics and scagnostics from the clusters. The third step uses these measures to compare the current data clusters from the main scatterplot to the same data in other dimensions. The results enable analysts to retrieve similar or dissimilar views as guidance to explore the entire data set. We provide a proof-of-concept implementation as a test bench and describe a use case to show a practical application and initial results.
眼注视散点图:使用隐式数据选择探索SPLOMs建议的概念和初步结果
我们提出了一个三步走的概念和视觉设计,以支持通过眼动追踪在散点图中对高维数据的视觉探索。首先,我们使用现有的分类、自动聚类算法或眼动追踪从底层数据中提取子集。对于后者,我们将凝视映射到散点图中的底层数据维度。作为观看者注视焦点的数据点簇被标记为兴趣簇(眼-心假说)。在第二步中,我们的概念从统计数据中提取各种属性,从聚类中提取诊断信息。第三步使用这些度量将主散点图中的当前数据簇与其他维度的相同数据簇进行比较。结果使分析人员能够检索相似或不同的视图,作为探索整个数据集的指导。我们提供了一个概念验证实现作为测试平台,并描述了一个用例来展示实际应用程序和初始结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信