{"title":"Approximating Linear Order Inference in OWL 2 DL by Horn Compilation","authors":"Jianfeng Du, G. Qi, Jeff Z. Pan, Yi-Dong Shen","doi":"10.1109/WI-IAT.2012.11","DOIUrl":null,"url":null,"abstract":"In order to directly reason over inconsistent OWL 2 DL ontologies, this paper considers linear order inference which comes from propositional logic. Consequences of this inference in an inconsistent ontology are defined as consequences in a certain consistent sub-ontology. This paper proposes a novel framework for compiling an OWL 2 DL ontology to a Horn propositional program so that the intended consistent sub-ontology for linear order inference can be approximated from the compiled result in polynomial time. A tractable method is proposed to realize this framework. It guarantees that the compiled result has a polynomial size. Experimental results show that the proposed method computes the exact intended sub-ontology for almost all test cases, while it is significantly more efficient and scalable than state-of-the-art exact methods.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In order to directly reason over inconsistent OWL 2 DL ontologies, this paper considers linear order inference which comes from propositional logic. Consequences of this inference in an inconsistent ontology are defined as consequences in a certain consistent sub-ontology. This paper proposes a novel framework for compiling an OWL 2 DL ontology to a Horn propositional program so that the intended consistent sub-ontology for linear order inference can be approximated from the compiled result in polynomial time. A tractable method is proposed to realize this framework. It guarantees that the compiled result has a polynomial size. Experimental results show that the proposed method computes the exact intended sub-ontology for almost all test cases, while it is significantly more efficient and scalable than state-of-the-art exact methods.