A cross-platform recommendation system from Facebook to Instagram

Chia-Ling Chang, Yen-Liang Chen, Jia-Shin Li
{"title":"A cross-platform recommendation system from Facebook to Instagram","authors":"Chia-Ling Chang, Yen-Liang Chen, Jia-Shin Li","doi":"10.1108/el-09-2022-0210","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to provide a cross-platform recommendation system that recommends the most suitable public Instagram accounts to Facebook users.\n\n\nDesign/methodology/approach\nWe collect data from both Facebook and Instagram and then propose a similarity matching mechanism for recommending the most appropriate Instagram accounts to Facebook users. By removing the data disparity between the two heterogeneous platforms and integrating them, the system is able to make more accurate recommendations.\n\n\nFindings\nThe results show that the method proposed in this paper can recommend suitable public Instagram accounts to Facebook users with very high accuracy.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this is the first study to propose a recommender system to recommend Instagram public accounts to Facebook users. Second, our proposed method can integrate heterogeneous data from two different platforms to generate collaborative recommendations. Furthermore, our cross-platform system reveals an innovative concept of how multiple platforms can promote their respective platforms in a unified, cooperative and collaborative manner.\n","PeriodicalId":330882,"journal":{"name":"Electron. Libr.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Libr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/el-09-2022-0210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose The purpose of this paper is to provide a cross-platform recommendation system that recommends the most suitable public Instagram accounts to Facebook users. Design/methodology/approach We collect data from both Facebook and Instagram and then propose a similarity matching mechanism for recommending the most appropriate Instagram accounts to Facebook users. By removing the data disparity between the two heterogeneous platforms and integrating them, the system is able to make more accurate recommendations. Findings The results show that the method proposed in this paper can recommend suitable public Instagram accounts to Facebook users with very high accuracy. Originality/value To the best of the authors’ knowledge, this is the first study to propose a recommender system to recommend Instagram public accounts to Facebook users. Second, our proposed method can integrate heterogeneous data from two different platforms to generate collaborative recommendations. Furthermore, our cross-platform system reveals an innovative concept of how multiple platforms can promote their respective platforms in a unified, cooperative and collaborative manner.
从Facebook到Instagram的跨平台推荐系统
本文的目的是提供一个跨平台的推荐系统,为Facebook用户推荐最适合的Instagram公众账号。设计/方法/方法我们从Facebook和Instagram收集数据,然后提出一个相似度匹配机制,为Facebook用户推荐最合适的Instagram账户。通过消除两个异构平台之间的数据差异并将其集成,系统能够做出更准确的推荐。结果表明,本文提出的方法能够以非常高的准确率向Facebook用户推荐合适的Instagram公众账号。原创性/价值据作者所知,这是第一个提出推荐系统向Facebook用户推荐Instagram公共账户的研究。其次,我们提出的方法可以整合来自两个不同平台的异构数据来生成协同推荐。此外,我们的跨平台系统揭示了一个创新的概念,即多个平台如何以统一、协作和协作的方式推广各自的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信