Neural network techniques applied to seismic event classification

M. D. Murphy, J.A. Cercone
{"title":"Neural network techniques applied to seismic event classification","authors":"M. D. Murphy, J.A. Cercone","doi":"10.1109/SSST.1993.522799","DOIUrl":null,"url":null,"abstract":"An artificial neural network is incorporated as part of a software simulation system for the purpose of classifying seismic events from waveform data. Unprocessed seismograms are not well suited for presentation to neural networks because of the large number of data points required to represent a seismic event in the time domain. Parametric representation of the seismic event provides adequate information for accurate event classification, while significantly reducing the minimum size and is comprised of five signal classes, with 2400 samples per seismic trace. Each waveform in this database is parametrically represented by ten central moments. These moments are presented to the neural network for classification. Correct seismic event classification accuracy exceeds 98%.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An artificial neural network is incorporated as part of a software simulation system for the purpose of classifying seismic events from waveform data. Unprocessed seismograms are not well suited for presentation to neural networks because of the large number of data points required to represent a seismic event in the time domain. Parametric representation of the seismic event provides adequate information for accurate event classification, while significantly reducing the minimum size and is comprised of five signal classes, with 2400 samples per seismic trace. Each waveform in this database is parametrically represented by ten central moments. These moments are presented to the neural network for classification. Correct seismic event classification accuracy exceeds 98%.
神经网络在地震事件分类中的应用
将人工神经网络作为软件仿真系统的一部分,用于从波形数据中对地震事件进行分类。未处理的地震图不适合用神经网络表示,因为在时域中表示地震事件需要大量的数据点。地震事件的参数表示为准确的事件分类提供了足够的信息,同时显著减少了最小尺寸,由五个信号类别组成,每个地震道有2400个样本。该数据库中的每个波形由十个中心矩参数化表示。这些力矩被呈现给神经网络进行分类。正确的地震事件分类准确率超过98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信