Approximations of Value-at-Risk As an Extreme Quantile of a Random Sum of Heavy-Tailed Random Variables

L. Hannah, B. Puza
{"title":"Approximations of Value-at-Risk As an Extreme Quantile of a Random Sum of Heavy-Tailed Random Variables","authors":"L. Hannah, B. Puza","doi":"10.21314/JOP.2015.154","DOIUrl":null,"url":null,"abstract":"This paper studies the approximation of extreme quantiles of random sums of heavy-tailed random variables, or more specifically, subexponential random variables. A key application of this approximation is the calculation of operational VaR (value at risk) for financial institutions, to determine operational risk capital requirements. The paper follows work by Bocker & Kluppelberg (2005) & Bocker and Sprittulla (2006) and makes several advances. These include two new approximations of VaR and an extension to multiple loss types where the VaR relates to a sum of random sums, each of which is defined by different distributions. The proposed approximations are assessed via a simulation study.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOP.2015.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the approximation of extreme quantiles of random sums of heavy-tailed random variables, or more specifically, subexponential random variables. A key application of this approximation is the calculation of operational VaR (value at risk) for financial institutions, to determine operational risk capital requirements. The paper follows work by Bocker & Kluppelberg (2005) & Bocker and Sprittulla (2006) and makes several advances. These include two new approximations of VaR and an extension to multiple loss types where the VaR relates to a sum of random sums, each of which is defined by different distributions. The proposed approximations are assessed via a simulation study.
作为重尾随机变量随机和的极值分位数的风险值逼近
本文研究了重尾随机变量,或更具体地说是次指数随机变量的随机和的极值分位数的逼近。这种近似的一个关键应用是计算金融机构的操作VaR(风险值),以确定操作风险资本要求。本文遵循Bocker & Kluppelberg(2005)和Bocker & Sprittulla(2006)的工作,并取得了一些进展。其中包括VaR的两个新的近似和扩展到多个损失类型,其中VaR与随机和的总和相关,每个随机和都由不同的分布定义。通过模拟研究对所提出的近似进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信