Can Feature Selection be used to Detect Physiological Components in P300 based BCI for amyotrophic lateral Sclerosis patients?

C. Liti, L. Bianchi, V. Piccialli, M. Cosmi
{"title":"Can Feature Selection be used to Detect Physiological Components in P300 based BCI for amyotrophic lateral Sclerosis patients?","authors":"C. Liti, L. Bianchi, V. Piccialli, M. Cosmi","doi":"10.3217/978-3-85125-533-1-51","DOIUrl":null,"url":null,"abstract":"The detection of brain state changes can dramatically improve the comprehension of cerebral functioning. To reach this aim, machine learning based automatic tools may be extremely useful to correctly classify different brain responses. The performance of these instruments depends on the features and the classification algorithm employed, but also from a good data preprocessing able to improve the poor signal-to-noise ratio [4] of the EEG signal. In this work, we combine data preprocessing with a feature selection based on the filter ReliefF and the linear SVM classifier LibLinear in order to analyse the data deriving from a P300 speller paradigm on patients with Amyotrophic lateral sclerosis (ALS). The purpose of this study is twofold: on the one hand we want to maximize the predictor’s performance, but most importantly, we aim at showing how the features ranking can be used to support scientific hypotheses or diagnoses.","PeriodicalId":433248,"journal":{"name":"Graz Brain-Computer Interface Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graz Brain-Computer Interface Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3217/978-3-85125-533-1-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of brain state changes can dramatically improve the comprehension of cerebral functioning. To reach this aim, machine learning based automatic tools may be extremely useful to correctly classify different brain responses. The performance of these instruments depends on the features and the classification algorithm employed, but also from a good data preprocessing able to improve the poor signal-to-noise ratio [4] of the EEG signal. In this work, we combine data preprocessing with a feature selection based on the filter ReliefF and the linear SVM classifier LibLinear in order to analyse the data deriving from a P300 speller paradigm on patients with Amyotrophic lateral sclerosis (ALS). The purpose of this study is twofold: on the one hand we want to maximize the predictor’s performance, but most importantly, we aim at showing how the features ranking can be used to support scientific hypotheses or diagnoses.
特征选择可以用于肌萎缩侧索硬化患者基于P300的脑机接口检测生理成分吗?
对大脑状态变化的检测可以极大地提高对大脑功能的理解。为了实现这一目标,基于机器学习的自动工具对于正确分类不同的大脑反应可能非常有用。这些仪器的性能取决于所采用的特征和分类算法,也取决于良好的数据预处理能否改善较差的脑电信号信噪比[4]。在这项工作中,我们将数据预处理与基于滤波器ReliefF和线性支持向量机分类器LibLinear的特征选择相结合,以分析肌萎缩性侧索硬化症(ALS)患者P300拼写范式的数据。本研究的目的有两个:一方面,我们希望最大化预测器的性能,但最重要的是,我们旨在展示如何使用特征排序来支持科学假设或诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信