YOLO-CBD: A Recognition and Detection Method for Cigarette Box Based on YOLOv5

Shengchun Li, Sen Zhou, Yong Huang, Changhong Liu, Xiaoxiang Deng
{"title":"YOLO-CBD: A Recognition and Detection Method for Cigarette Box Based on YOLOv5","authors":"Shengchun Li, Sen Zhou, Yong Huang, Changhong Liu, Xiaoxiang Deng","doi":"10.1109/ISSSR58837.2023.00044","DOIUrl":null,"url":null,"abstract":"In recent years, cigarette box recognition has be-come a significant aspect of object detection that has applications in many areas, such as the retail industry and health care. This paper proposes a real-time YOLOv5-based cigarette box detection method (YOLO-CBD). Specifically, the approach involves training YOLOv5 to detect and label the location of cigarette boxes in an image, then using the ArcFace algorithm to extract the feature of cigarette boxes. We evaluate the YOLO-CBD method on the cigarette box datasets. The results show that our method achieves a high MAP of 95.1% in complex scenarios, which is better than the state-of-the-art methods. In conclusion, the YOLO-CBD demonstrates high accuracy and stability in detecting cigarette boxes. It is a promising approach for practical applications in the tobacco industry.","PeriodicalId":185173,"journal":{"name":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSR58837.2023.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, cigarette box recognition has be-come a significant aspect of object detection that has applications in many areas, such as the retail industry and health care. This paper proposes a real-time YOLOv5-based cigarette box detection method (YOLO-CBD). Specifically, the approach involves training YOLOv5 to detect and label the location of cigarette boxes in an image, then using the ArcFace algorithm to extract the feature of cigarette boxes. We evaluate the YOLO-CBD method on the cigarette box datasets. The results show that our method achieves a high MAP of 95.1% in complex scenarios, which is better than the state-of-the-art methods. In conclusion, the YOLO-CBD demonstrates high accuracy and stability in detecting cigarette boxes. It is a promising approach for practical applications in the tobacco industry.
YOLO-CBD:一种基于YOLOv5的烟盒识别检测方法
近年来,烟盒识别已成为物体检测的一个重要方面,在零售行业和医疗保健等许多领域都有应用。提出了一种基于yolov5的烟盒实时检测方法(yolov5 - cbd)。具体来说,该方法包括训练YOLOv5检测和标记图像中烟盒的位置,然后使用ArcFace算法提取烟盒的特征。我们在烟盒数据集上评估了YOLO-CBD方法。结果表明,该方法在复杂场景下的MAP值高达95.1%,优于现有方法。综上所述,YOLO-CBD检测烟盒具有较高的准确性和稳定性。在烟草业的实际应用中,这是一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信