Bias Reduction in Nonlinear and Dynamic Panels in the Presence of Cross-Section Dependence

Cavit Pakel
{"title":"Bias Reduction in Nonlinear and Dynamic Panels in the Presence of Cross-Section Dependence","authors":"Cavit Pakel","doi":"10.2139/ssrn.2157212","DOIUrl":null,"url":null,"abstract":"Fixed effects estimation of nonlinear dynamic panel models is subject to the incidental parameter issue, leading to a biased asymptotic distribution. While this problem has been studied extensively in the literature, a general analysis allowing for both serial and cross-sectional dependence is missing. In this paper we investigate the large-N,T theory of the profile and integrated likelihood estimators, allowing for dependence across both dimensions. We show that under stronger dependence types the asymptotic bias disappears, but a Op(1∕T) small-sample bias remains. We provide bias correction and inference methods, and also obtain primitive conditions for asymptotic normality under various dependence settings.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2157212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fixed effects estimation of nonlinear dynamic panel models is subject to the incidental parameter issue, leading to a biased asymptotic distribution. While this problem has been studied extensively in the literature, a general analysis allowing for both serial and cross-sectional dependence is missing. In this paper we investigate the large-N,T theory of the profile and integrated likelihood estimators, allowing for dependence across both dimensions. We show that under stronger dependence types the asymptotic bias disappears, but a Op(1∕T) small-sample bias remains. We provide bias correction and inference methods, and also obtain primitive conditions for asymptotic normality under various dependence settings.
存在截面依赖的非线性和动态面板的偏压减小
非线性动态面板模型的固定效应估计受附带参数问题的影响,导致其渐近分布有偏。虽然这个问题已经在文献中进行了广泛的研究,但缺少一个允许串行和横断面依赖的一般分析。在本文中,我们研究了剖面的大n,T理论和集成似然估计,允许在两个维度上的依赖。我们证明了在较强的依赖类型下,渐近偏差消失,但仍然存在Op(1∕T)小样本偏差。给出了偏差校正和推理方法,并得到了各种依赖条件下渐近正态性的基本条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信