Parallelization and Deployment of Big Data Algorithms: The TOREADOR Approach

Ivan Martinez, J. Montero, T. Lobo, B. D. Martino, Salvatore D'Angelo, A. Esposito
{"title":"Parallelization and Deployment of Big Data Algorithms: The TOREADOR Approach","authors":"Ivan Martinez, J. Montero, T. Lobo, B. D. Martino, Salvatore D'Angelo, A. Esposito","doi":"10.1109/WAINA.2018.00120","DOIUrl":null,"url":null,"abstract":"In order to reduce the initial investments needed by small and medium enterprises (SMEs) to acquire the necessary expertise, hardware and software to run proper Big Data Analytics, TOREADOR proposes a Big Data Analytics framework which supports users in devising their own Big Data solutions by keeping the inherent costs at a minimum. Among the objectives of the TOREADOR framework is supporting developers in parallelizing and deploying their algorithms, in order to develop they own analytics solutions. This paper describes the Code-Based approach, developed by CINI and adopted within the TOREADOR framework to parallelize users' algorithms and deploy them on distributed platforms, with a focus on its integration with the web services and resources offered by ATOS for the actual deployment of the solution.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to reduce the initial investments needed by small and medium enterprises (SMEs) to acquire the necessary expertise, hardware and software to run proper Big Data Analytics, TOREADOR proposes a Big Data Analytics framework which supports users in devising their own Big Data solutions by keeping the inherent costs at a minimum. Among the objectives of the TOREADOR framework is supporting developers in parallelizing and deploying their algorithms, in order to develop they own analytics solutions. This paper describes the Code-Based approach, developed by CINI and adopted within the TOREADOR framework to parallelize users' algorithms and deploy them on distributed platforms, with a focus on its integration with the web services and resources offered by ATOS for the actual deployment of the solution.
大数据算法的并行化和部署:TOREADOR方法
为了减少中小企业(sme)为获得必要的专业知识、硬件和软件来运行适当的大数据分析所需的初始投资,TOREADOR提出了一个大数据分析框架,支持用户通过将固有成本降至最低来设计自己的大数据解决方案。TOREADOR框架的目标之一是支持开发人员并行化和部署他们的算法,以便开发他们自己的分析解决方案。本文描述了由CINI开发并在TOREADOR框架内采用的基于代码的方法,以并行化用户的算法并将其部署到分布式平台上,重点介绍了它与ATOS提供的web服务和资源的集成,以实现解决方案的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信