{"title":"Does Face Recognition Error Echo Gender Classification Error?","authors":"Y. Qiu, Vítor Albiero, Michael C. King, K. Bowyer","doi":"10.1109/IJCB52358.2021.9484346","DOIUrl":null,"url":null,"abstract":"This paper is the first to explore the question of whether images that are classified incorrectly by a face analytics algorithm (e.g., gender classification) are any more or less likely to participate in an image pair that results in a face recognition error. We analyze results from three different gender classification algorithms (one open-source and two commercial), and two face recognition algorithms (one open-source and one commercial), on image sets representing four demographic groups (African-American female and male, Caucasian female and male). For impostor image pairs, our results show that pairs in which one image has a gender classification error have a better impostor distribution than pairs in which both images have correct gender classification, and so are less likely to generate a false match error. For genuine image pairs, our results show that individuals whose images have a mix of correct and incorrect gender classification have a worse genuine distribution (increased false non-match rate) compared to individuals whose images consistently have correct gender classification. Thus, compared to images that generate correct gender classification, images with gender classification error have a lower false match rate and a higher false non-match rate.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper is the first to explore the question of whether images that are classified incorrectly by a face analytics algorithm (e.g., gender classification) are any more or less likely to participate in an image pair that results in a face recognition error. We analyze results from three different gender classification algorithms (one open-source and two commercial), and two face recognition algorithms (one open-source and one commercial), on image sets representing four demographic groups (African-American female and male, Caucasian female and male). For impostor image pairs, our results show that pairs in which one image has a gender classification error have a better impostor distribution than pairs in which both images have correct gender classification, and so are less likely to generate a false match error. For genuine image pairs, our results show that individuals whose images have a mix of correct and incorrect gender classification have a worse genuine distribution (increased false non-match rate) compared to individuals whose images consistently have correct gender classification. Thus, compared to images that generate correct gender classification, images with gender classification error have a lower false match rate and a higher false non-match rate.