Transfer Hawkes Processes with Content Information

Tianbo Li, Pengfei Wei, Yiping Ke
{"title":"Transfer Hawkes Processes with Content Information","authors":"Tianbo Li, Pengfei Wei, Yiping Ke","doi":"10.1109/ICDM.2018.00145","DOIUrl":null,"url":null,"abstract":"Hawkes processes are widely used for modeling event cascades. However, content and cross-domain information which is also instrumental in modeling is usually neglected. In this paper, we propose a novel model called transfer Hybrid Least Square for Hawkes (trHLSH) that incorporates Hawkes processes with content and cross-domain information. We also present the effective learning algorithm for the model. Evaluation on both synthetic and real-world datasets demonstrates that the proposed model can jointly learn knowledge from temporal, content and cross-domain information, and has better performance in terms of network recovery and prediction.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Hawkes processes are widely used for modeling event cascades. However, content and cross-domain information which is also instrumental in modeling is usually neglected. In this paper, we propose a novel model called transfer Hybrid Least Square for Hawkes (trHLSH) that incorporates Hawkes processes with content and cross-domain information. We also present the effective learning algorithm for the model. Evaluation on both synthetic and real-world datasets demonstrates that the proposed model can jointly learn knowledge from temporal, content and cross-domain information, and has better performance in terms of network recovery and prediction.
传输带有内容信息的Hawkes流程
霍克斯过程被广泛用于事件级联的建模。然而,同样有助于建模的内容和跨领域信息通常被忽略。在本文中,我们提出了一种新的模型,称为Hawkes的传递混合最小二乘法(trHLSH),该模型将Hawkes过程与内容和跨域信息相结合。同时给出了该模型的有效学习算法。综合数据集和真实数据集的评估表明,该模型能够从时间、内容和跨域信息中共同学习知识,在网络恢复和预测方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信